

Reference No.:

IREEDER-D2.2

Date: June. 15, 2021

Version: v2.0

DELIVERABLE 2.2

Teaching Materials - Internet of Things Lecture Notes

Written by Responsibility

Marios Raspopoulos (UCLAN) WP2 Leader

Nearchos Paspallis (UCLAN) Member

Stelios Ioannou (UCLAN) Member

Josephina Antoniou (UCLAN) Member

Eliana Stavrou (UCLAN) Member

Fabrizio Granelli (UNINT) Member

Claudio Sacchi (UNINT) Member

Omar R Daoud (PU) Member

Mohammed Bani Younis (PU) Member

Saleh Saraireh (PU) Member

Rasha Gh. Freehat (PU) Member

Jonathan Rodriguez (IT) WP5 Leader

Georgios Mantas (IT) Member

Maria Papaioannou (IT) Member

Claudia Barbosa (IT) Member

Felipe Gil-Castiñeira (UVIGO) WP4 Leader

Cristina López-Bravo (UVIGO) Member

René Lastra Cid (UVIGO) Member

Saud Althunibat (AHU) Project Coordinator

Moath Safasfeh (AHU) Member

Samiha Falahat (AHU) Member

Edited by

Marios Raspopoulos (UCLAN) WP2 Leader

Approved by

Saud Althunibat (AHU) Project Coordinator

This publication was produced with the financial support of the European Union. Its contents are

the sole responsibility of the partners of IREEDER project and do not necessarily reflect the views

of the European Union

Editor: Marios Raspopoulos

UClan Cyprus

June 2021

Introduction
to the

Internet of
Things

This publication was produced with the financial support of the European Union. Its contents are the sole
responsibility of the partners of IREEDER project and do not necessarily reflect the views of the European Union

This Photo by Unknown Author is licensed under CC BY-NC-ND

i

Abstract

This document serves as a comprehensive handbook for a course named “Introduction on the

Internet of Things”. The course has been prepared within the scope of the iREEDER project

which is funded by Erasmus+ (Call: Capacity Building in the field of Higher Education, Project

No. 609971-EPP-1-2019-JO-EPPKA1-CBHE-JP (2019-1975/001-001)). The course aims to

present the fundamental principles and architecture of IoT, discuss, examine, and evaluate

the key technological components underpinning IoT, learn how to practically Design, Code

and Build IoT solutions and review the key technological applications of IoT. The specific

learning outcomes are:

1. Understand the definitions, operating principles, components and use of IoT Systems.

2. Demonstrate advanced knowledge about the architecture, the key technologies and

protocols/standards used in IoT Systems.

3. Analyse and effectively use available frameworks/platforms to design, program, and

implement IoT systems.

4. Explore the relationship between IoT, cloud computing, and big data and be able to

identify necessary security measures.

5. Appraise the applicability of IoT in various engineering/business contexts and discuss

future challenges of IoT in various sectors.

Chapter 1 serves as a introductory overview of the IoT. It defines the term IoT and, reviews

the history and overviews the key-enabling technologies. It summarizes the main applications

of IoT and identifies the key research directions and connections. Chapter 2 serves as a

revision of Basic Programming covering topics like variables, conditional statements, looping

functions, I/O and presents the IoT IDE. Chapter 3 is about Software Development for IoT

Embedded Systems. It covers embedded programming in C including flow control, function

decomposition, data representation and structures. Chapters 4 and 5 present IoT

architectures and the main IoT components. There is also a reference to Cyber-Physical

systems, smart devices, and basicon storage and CPU, data movement, fetch-execute,

accelerators, input/output inc. SPI/I2C, peripherals. There also an overview of the Embedded

device memory architecture; SRAM, DRAM, Flash etc. Chapter 6 is about IoT

ii

Microcontrollers, Sensors for Data Acquisition and Actuators. Chapter 7 is about IoT

Connectivity Technologies presenting the main Wireless technologies for the IoT (WiFi,

Bluetooth, Zigbee, 6LowPAN, LoraWAN, etc.), Wireless sensor networks (Z-wave etc.) and

mobile Technologies (4G, 5G). Chapter 8 presents the main IoT Connectivity Protocols. These

include edge connectivity and protocols, Network and Data Protocols and data transmission

using IoT protocols (e.g. MQTT). Chapter 9 is about Data Storage and Cloud Systems whereas

chapter 10 presents Data analysis and applications used in IoT. Chapter 11 overviews the

principles of IoT Security and various security measures and standards proposed. Chapter 12

covers the ethical aspects in IoT overviewing topics related to data ownership, data

protection, trust, transparency etc. Finaly, chapter 13 overviews some key-enabling

technologies and Appications in IoT like Identification, Mobility, Positioning/Localization and

also topics on how power up the IoT likeEnergy Harvesting, Battery Life Optimisation etc.

iii

Table of Contents

Abstract .. i

Table of Contents .. iii

1 Introduction to IoT ... 9

1.1 Introduction ..10

1.1.1 What is the Internet of Things? ..10

1.1.2 IoT History ..11

1.1.3 IoT Facts ...12

1.1.4 IoT Penetration ...13

1.1.5 What happens today? ..13

1.1.6 Applications ..14

1.2 Enabling technologies for IoT ...15

1.2.1 Addressability ...15

1.2.2 Application Layer ..15

1.2.3 Communication Technologies ..15

1.2.4 Standards and Standards Organizations..18

1.3 IoT vertical applications ..18

1.3.1 Consumer Applications ...19

1.3.2 Organizational Applications ...19

1.3.3 Industrial Applications..20

1.3.4 Infrastructure Applications...21

1.3.5 Military Applications ..22

1.4 Identification of key research directions and connections ..23

1.4.1 Trends and Characteristics ...23

1.4.2 IoT Challenges ..26

2 Revision of Basic Programming and IoT IDE ... 29

2.1 Introduction to Programming for IoT ...30

2.2 Programming fundamentals ...30

2.2.1 Prerequisites ...31

2.2.2 Programming concepts covered...31

2.3 Procedural programming ...31

2.4 Variables, Expressions and Simple Statements ..32

2.4.1 Data Types ..32

2.4.2 Comments ..34

2.4.3 Expressions ...34

iv

2.4.4 Code Blocks...39

2.4.5 Statements ...40

2.4.6 Conditionals ..41

2.4.7 Loops ..43

2.4.8 Arrays ...46

2.4.9 Functions and Function Calls ..47

2.5 Integrated Development Environment ..50

2.6 Practice exercises ...52

2.7 Concluding remarks and further resources ..52

2.7.1 Further resources ...52

3 Software Development for IoT Embedded Systems ... 54

3.1 Introduction ..55

3.2 The development environment ..56

3.2.1 Tour of the IDE ..56

3.2.2 Tour of the Arduino UNO..57

3.2.3 Hello (Blinking) World! ...58

3.2.4 Monitoring code execution and debugging ...61

3.3 Examples ...64

3.3.1 Simple traffic lights system ..64

3.3.2 Adaptive traffic lights system ...67

3.4 Additional Resources ..70

3.4.1 Arduino simulator...70

3.4.2 Online tutorials and examples ...71

4 IoT architecture and components (1 of 2) .. 72

4.1 Introduction ..73

4.2 Characteristics and Requirements of the IoT ...74

4.2.1 Useful Definitions ...74

4.2.2 ITU-T Technical Overview of the IoT...74

4.2.3 Types of Devices ...75

4.2.4 Fundamental Characteristics of the IoT ...76

4.2.5 IoT Requirements ...77

4.3 IoT Architectures ..79

4.3.1 3-Layer Architecture ...79

4.3.2 5-layer Architecture ..80

4.3.3 Cloud and Fog-Based Architectures ...81

4.3.4 Social IoT ..84

4.3.5 The ITU-T IoT Reference Model ..87

v

4.4 IoT Devices and Components ...89

4.4.1 Sensors/Actuators and Embedded Technology..91

4.4.2 Connectivity ..96

4.4.3 Data Management and IoT Analytics ..97

4.4.4 IoT Cloud ...98

4.4.5 User Interface ...99

5 IoT architecture and components (2 of 2) ... 100

5.1 Cyber-Physical System ..101

5.1.1 Introduction ..101

5.1.2 The Rise of CPS ...101

5.1.3 Smart Home Systems as a CPS Case study ...104

5.2 Basic concepts of IoT ..108

5.2.1 Storage and Central Processing Units ..108

5.2.2 Data Movement ...110

5.2.3 Input and Output SPI/I2C. ..112

5.2.4 The instruction cycle/ the fetch-decode-execute cycle. ...116

5.2.5 Accelerators. ...117

5.2.6 Peripherals..119

5.3 Embedded Memory ..120

5.3.1 Embedded Systems Memory Types ..120

5.4 Causes and Implications of Memory ..127

5.4.1 Compute-Constrained Devices ...127

5.4.2 Constrained Node, Constrain Network and Constrained-Node Network128

5.4.3 The need for Management of constrains devices and constrained devises restrictions................132

5.4.4 Applications for Constrained Devices ...134

6 IoT Microcontrollers, Sensors for Data Acquisition and Actuators .. 136

6.1 Implementing the Internet of Things ...137

6.2 Microcontrollers ...137

6.2.1 Examples of microcontrollers ...138

6.3 Real-time Systems ..141

6.4 Embedded Software ...141

6.5 IoT Operating Systems ..142

6.5.1 Arduino IDE...142

6.5.2 ARM MCU Programming ..142

6.5.3 Contiki...142

6.5.4 Android Things ...143

6.5.5 Riot ...143

vi

6.5.6 Apache Mynewt ...144

6.5.7 Huawei LightOS ..144

6.5.8 Zephyr ...145

6.5.9 Snappy ..145

6.5.10 TinyOS ..145

6.5.11 Fuchsia ...145

6.5.12 Windows IoT ..146

6.5.13 TizenRT ...146

6.5.14 Raspbian or Raspberry Pi OS ..146

6.5.15 FreeRTOS ..147

6.5.16 Embedded Linux ...147

6.5.17 mbed OS ...147

6.6 Sensing components and devices...148

6.6.1 Sensors ...149

6.6.2 Actuators ..153

7 IoT Connectivity Technologies .. 156

7.1 Introduction ..157

7.1.1 Technologies for connectivity ...157

7.2 Short range communications ...159

7.2.1 Wireless Local Area Networks (Wi-Fi) ..160

7.2.2 Wireless Personal Area Networks (Bluetooth) ...166

7.2.3 Personal Area Networks (Zigbee) ...183

7.3 Wide Area Networks: Cellular connectivity..188

7.3.1 Sigfox ..190

7.3.2 LoRa ..192

7.3.3 NB-IoT ...196

7.4 Wireless Sensor Networks ..197

7.4.1 Introduction ..197

7.4.2 6LoWPAN ...200

8 IoT Connectivity Protocols ... 204

8.1 IoT Connectivity Protocols ..205

8.2 IoT Connectivity Paradigms ..205

8.3 Application Layer Protocols for the IoT ..211

8.3.1 HTTP ...212

8.3.2 MQTT ..212

8.3.3 CoAP ...213

8.3.4 WebSocket ..214

vii

8.3.5 AMQP ...214

8.3.6 Test cases for the IoT Protocols ..215

8.4 Integrating IoT within current networks ..216

8.4.1 IPv4/IPv6, Ethernet/GigE..216

8.4.2 Cellular/WAN connectivity ...217

8.4.3 Dedicated standards ..217

8.5 Test cases for Connecting the Internet of Things ...222

9 Data Storage and Cloud Systems .. 226

9.1 Introduction ..227

9.2 Cloud Computing Basics ...227

9.3 Processing for the Internet of Things Services ...229

9.3.1 On-device Processing ...231

9.3.2 Gateway Processing ...232

9.3.3 Cloud Processing ..233

9.4 Storage ..236

9.4.1 SQL Databases ..237

9.4.2 NoSQL Databases ...237

9.4.3 Time Series Databases ...238

10 Data Analytics and Applications ... 240

10.1 Data Analytics ...241

10.2 Interpretation of IoT Data ..242

10.3 Visualization of Data ...244

10.3.1 Grafana ..245

10.3.2 Kibana ..245

10.3.3 Power BI ...246

10.4 A case study of a simple sensor, broker, app application deployment ...247

11 IoT Security and security standards ... 249

11.1 The Internet of Things (IoT) – An Overview ...250

11.1.1 Evolution ..250

11.1.2 IoT Components ...251

11.1.3 IoT Security...253

11.2 Baseline Security Recommendations for IoT..262

11.2.1 Security considerations ..262

11.2.2 Challenge of defining horizontal baseline security measures..264

11.2.3 Security measures and good practices ..265

11.2.4 Gaps analysis ...267

viii

11.3 Guidelines for Securing the Internet of Things: Secure supply chain for IoT273

11.3.1 Supply chain reference model for IoT ..273

11.3.2 Good practices for security of IoT supply chain ...276

11.4 Secure Software Development Lifecycle ..277

11.4.1 IoT Secure Software Development Lifecycle (SDLC) ...277

11.4.2 SDLC phases ...277

11.4.3 Security in SDLC ..279

12 Ethics in IoT Networks and Applications ... 281

12.1 General Principles ...282

12.1.1 General Perceptions of Ethics related to technology and IoT ..282

12.1.2 Why Ethics? ..283

12.1.3 A methodical Approach to Resolution ...288

12.2 Focusing on IoT Development and Usage ..289

12.2.1 Operational Ethics Requirements for technology developers and users290

12.2.2 Law & Ethics and their application to technology development and use292

12.3 The ‘IoT and Ethics’ case study ...293

13 Key-Enabling Technologies and Applications in IoT ... 295

13.1 Introduction ..296

13.2 Identification ..296

13.2.1 Radio Frequency Identification (RFID): ...297

13.2.2 Barcode Identification Technique ..303

13.2.3 Biometric Identification ..305

13.2.4 Comparison of identification techniques ..306

13.3 Localization ...306

13.3.1 Overview of Localization process ...307

13.3.2 Localization techniques classification ..308

13.3.3 Positioning systems..309

13.3.4 Ranging Techniques ...311

13.3.5 Range-base Localization ..312

13.3.6 Range-Free Localization ...314

13.3.7 Comparison of localization techniques ..316

13.4 IoT Power Management ...317

13.4.1 Energy Harvesting ..319

13.4.2 Battery technologies for IoT...324

Bibliography .. 326

P a g e | 9

1 Introduction to IoT

Author(s): Fabrizio Granelli

 This Photo by Unknown Author is licensed under CC BY-NC-ND

https://landbars.wordpress.com/2015/11/19/the-government-the-internet-of-things/
https://creativecommons.org/licenses/by-nc-nd/3.0/

P a g e | 10

1.1 Introduction

1.1.1 What is the Internet of Things?

Today, strong interest by researchers and companies in several fields is being captured by the

so-called “Internet of Things”, as enabling technology to embed the Internet into the “real

world”. Applications such as smart city, smart grid, smart home would not be possible without

the Internet of Things.

From a technical viewpoint, the IoT technology or Internet of Things is a network of connected

things which can communicate data without human involvement, such as sensors, smart

appliances, electronics, and machines.

For a more precise definition, the ITU "Internet of Things Global Standards Initiative" defines

the Internet of things (IoT) as “a system of interrelated computing devices, mechanical and

digital machines provided with unique identifiers (UIDs) and the ability to transfer data over a

network without requiring human-to-human or human-to-computer interaction”.

However, the potential of IoT goes much beyond simply connecting objects, as today the

Internet of Things is not the "hype" or a "buzzword" anymore, but it has the power to change

our world and lives.

Indeed, regardless of the actual number of connected devices (Gartner estimated 50B devices

connected by 2020), there is a concrete indication that IoT will play an important role in our

everyday life.

An interesting aspect of the Internet of Things is that, while such technology is already being

deployed and partially already present in our homes (see for example, Google Nest, or

Amazon Alexa), still it presents several challenges involving research and development that

should be addressed in order to consolidate IoT as a permanent building block of the Society

of the Future.

This course is intended to provide an introduction to the Internet of Things, and it is intended

to describe the basic and applications of the IoT technology.

P a g e | 11

1.1.2 IoT History

The Internet of Things does not represent a novel paradigm of the last few year. The concept

of connecting objects to the Internet goes back in time to the early days of the Internet, which

can to some extent be considered as the first days of the Internet of Things, too. Indeed, in

1982, Carnegie Mellon University became the host of the first Internet-connected appliance

when a modified Coca-Cola vending machine was connected to the network. In such first case,

the idea was to connect the vending machine to the Internet in order to enable the machine

to report its inventory as well as loaded drinks temperature through the Internet (see Figure

1-1).

Figure 1-1: First object connected to the Internet (Source: CMU).

Later on, in the ‘90s, a famous Mark Weiser's paper on ubiquitous computing, "The Computer

of the 21st Century", as well as academic works presented at conferences such as PerCom

and UbiComp, produced a contemporary vision of the IoT. Meanwhile, several companies

gained interest in the IoT and started building IoT-inspired solutions. We can mention in this

area Microsoft's at Work or Novell's NEST.

The IoT field gained momentum in 1999, when, during the World Economic Forum at Davos,

Bill Joy presented device-to-device communication as a part of his "Six Webs" framework. In

the same year, Kevin Ashton of Procter & Gamble introduced the term "Internet of things",

though he declared to prefer the sentences "Internet for things".

P a g e | 12

In such period, specific attention was focused on Radio-frequency identification (RFID)

technologies. Indeed, RFID was considered an essential building block for the Internet of

things, as it was considered the most appropriate solution to allow computers to recognize

and interact with real-world objects.

Some experts define the Internet of things as "simply the point in time when more 'things’ or

‘objects' were connected to the Internet than people". By using such definition, it is possible

to estimate that IoT was “born” between 2008 and 2009, since data from Cisco Systems shows

the connected things/people ratio growing from 0.08 in 2003 to 1.84 in 2010.

This trend is continuing also in the recent years, with an estimate of total connected devices

to the Internet approaching 500 billions in 2022.

1.1.3 IoT Facts

In order to try to describe the IoT scenario, in the following some relevant facts about the

Internet of Things are reported:

• The number of devices connected to the Internet was 7 billion in 2018, and it is

expected to approach 10 billion by the end of 2020. [1] Other forecasts predict up to

500 billion connected devices by 2022.

• Other forecasts predict a larger amount of “connected things” by 2020. Indeed,

following an analysis by Gartner, over 14 billion devices were connected by the end of

2019, and the forecast is over 25 billion by the end of 2021. [2]

• At the moment, it seems that the large majority of IoT devices is consistituted by

smartphones. Indeed, the total number of smartphone users reached the level of 3

billion in 2018 (source: Newzoo). [3]

• Similar analysis underlined that the majority of IoT devices that are currently

connected are typically located at home or at work. More than half of all IoT devices

were connected to Wireless Personal Area Networks in 2018 (Bluetooth, Zigbee, etc.).

[1]

• Expectations on the potential market of the Internet of Things are extremely high. It

is estimated that the global market of the Internet of Things was over $150 billion in

2018 and it is expected to exceed $1.5 trillion by 2025. [1]

P a g e | 13

1.1.4 IoT Penetration

A relevant question in order to understand the relevance and dimension of the IoT World is

the penetration in terms of connected devices/people worldwide. The following figure

presents an analysis by IoT Analytics Research showing clearly that, while the number of non-

IoT connections is expected to grow in a slow linear manner, IoT connections are expected to

show a more aggressive exponential growth.

Figure 1-2: Active device connections worldwide (Source data from IoT Analytics).

1.1.5 What happens today?

Is IoT already a reality? In some cases, it is. For example, Error! Reference source not found.

shows the percentage of connected devices in several application scenarios. The majority of

patient monitoring systems are today connected, and more than half of energy meters are

capable of automating the energy consumption measurements. This scenario depends of

course on the geographical area and level of development of a country. As an example, Italy

implemented a large-scale deployment of smart meters in the early 2000s. 36.7 million

meters were deployed between 2001 and 2011, accounting for about 86% of the points of

delivery.

0

5

10

15

20

25

30

35

40

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Total Number of Active Device Connections
Worldwide (in Bn)

IoT Non-IoT

P a g e | 14

Figure 1-3: Number of connected devices in different application scenarios.

1.1.6 Applications

The Internet of Things represents one of the markets with biggest potentials nowadays, since

it impacts on several vertical areas of application, ranging from manufacturing to healthcare,

from transportation to agriculture. The following figures provides a breakdown of value-add

by IoT to different sectors. More details on the main fields of application of IoT are illustrated

in Section 1.3.

Figure 1-4: Value-add by IoT to different services in 2020 (based on data from Gartner).

64%
Patient monitors

56%
Energy meters

33%
X-rays & imaging

16%

16%

12%

11%8%

8%

7%

6%

5%
4%4%3%

IoT Value Add by 2020 ($1.9 Trillion)

Manufacturing

Healthcare

Insurance

Banking

Retail

Computing

Government

Transportation

Utilities

Real Estate

P a g e | 15

1.2 Enabling technologies for IoT

The Internet of Things is in some texts defined as a system of systems. Indeed, IoT is not a

single technology, but more specifically an eco-system, which is constituted by the integration

many technologies. A crucial aspect of the Internet of Things is the network used to

communicate between devices of an IoT installation. Several available wireless or wired

technologies may fulfil such role. However, this is only one of the several technologies that

are integrated by the IoT.

The next sub-sections summarize the major functionalities and technologies required by IoT.

1.2.1 Addressability

In order to identify and reach the connected objects, addressability represents the key

technology required to enable the Internet of Things. The original idea was to exploit the

Auto-ID Center, based on RFID-tags, and distinct identification through the Electronic Product

Code.

This has evolved in modern IoT into objects having an IP address or URI (Universal Resource

Identifier).

1.2.2 Application Layer

An application layer protocol and supporting framework for implementing IoT applications is

required. The purpose of the application layer would be to offer a suitable interface to

interface with the connected objects and devices, and to enable efficient access to

information on their status and functionalities.

Examples of protocols operating on the application layer of IoT are Auto Discovery Resource

Control (ADRC) and MQTT (Message Queue Telemetry Transport - ISO/IEC PRF 20922).

1.2.3 Communication Technologies

Connectivity represents a building block to build IoT services. In this section we will review

some of the more interesting and diffused communication technologies for the Internet of

Things.

P a g e | 16

1.2.3.1 Short-range wireless

Communication technologies enabling connectivity in short-range (1cm-100m) are those

typically used for building Wireless Personal Area Networks (WPANs) or Wireless Local Area

Networks (WLANs). The most diffused technologies include:

• Bluetooth – The standard provides a specification that enables to implement a mesh

networking variant to Bluetooth low energy (BLE). Such technology allows to

interconnect with increased number of nodes via device-to-device communication

and offers a standardized application layer.

• Light-Fidelity (Li-Fi) – Li-Fi proposes the usage of visible light communication as an

alternative wireless communication technology with respect to the Wi-Fi standard. Li-

Fi offers increased bandwidth, but it provides a shorter range and requires line-of-

sight.

• Near-field communication (NFC) – NFC offers protocols designed to implement

communication between two electronic devices within a few centimeters range.

• Radio-frequency identification (RFID) – RFID is based on the usage of tags embedded

in real life objects. By using electromagnetic fields RFID technology allows to read

digital data stored in such tags.

• Wi-Fi – Common technology used for implementing wireless local area networking

based on the IEEE 802.11 standard. Wi-Fi devices may communicate through a shared

access point or directly via device-to-device communication.

• ZigBee – A wireless personal area networking solution based on the IEEE 802.15.4

standard. Zigbee is designed to provide low power consumption, low data rate, and

low cost.

• Z-Wave – It represents a wireless communication protocol which is used primarily for

home automation and security applications.

1.2.3.2 Medium-range wireless

Medium-range wireless connectivity is typically offered by Wide Area Networking

Technologies. In the case of wireless communications, WANs are dominated by cellular

networks, currently implemented by means of:

P a g e | 17

• LTE-Advanced – LTE represents the most diffused cellular technology nowadays, being

the 4th Generation of cellular networks standardized by 3GPP. LTE offers broadbad

access to the Internet for mobile users and devices. In particular, LTE-Advanced

provides additional improvements, enabling extended coverage, higher throughput,

and lower latency.

• 5G – The 5th Generation of 3GPP standards is expected to address novel requirements,

including the capability to connect a large number of IoT devices, even mobile ones.

5G usage scenarios include massive Machine Type Communications (mMTC) and

Ultra-Reliable Low-Latency Communications (URLLC), which might be adequate to

support different IoT applications.

1.2.3.3 Long-range wireless

Larger geographical areas can be covered by using communication technologies fine-tuned to

the requirements of the Internet of Things, and in particular:

• Low-power wide-area networking (LPWAN) – Low power WAN solutions represent

long-range communication technologies that target low data rate and reduced power

and costs. Examples of available LPWAN technologies include: LoRaWan, Sigfox, NB-

IoT, Weightless, RPMA.

• Very small aperture terminal (VSAT) – VSATs and other similar solutions provide

narrowband and broadband connectivity by exploiting satellite communications. This

allows for greater coverage, also in case of lack of terrestrial infrastructure in the

considered geographical areas.

1.2.3.4 Wired Technologies

As an alternative to wireless connections, wired connections can be used in cases where the

objects are installed in pre-defined and fixed positions. Most common communication

technologies include:

• Ethernet – Ethernet represents an extremely successful wired technology. Ethernet

was originally designed as a Local Area Network technology operating on co-axial

cables or twisted pairs, but it later extended to a wide range of applications with the

introduction of optical communications, including also MANs/WANs.

P a g e | 18

• Power-line communication (PLC) – Power-line communications are based on the

concept to exploit electrical wires to carry both power and data. This allows the

exploitation of the power lines as a communication medium, leading to standards such

as HomePlug or G.hn for potential utilization of PLC in networking IoT devices.

1.2.4 Standards and Standards Organizations

Given the complexity of the IoT architecture and services, several standards and standards

organizations are involved. The following list provide the main bodies involved in IoT

standards:

• Auto-ID Labs - Auto Identification Center

• EPCglobal - Electronic Product code Technology

• Government bodies, e.g. FDA - U.S. Food and Drug Administration

• GS1 - Global Standards One

• IEEE - Institute of Electrical and Electronics Engineers

• IETF - Internet Engineering Task Force

• ISO/IEC - International Organization for Standardization/ International

Electrotechnical Commission (ITU-T M 3000)

• MTConnect Institute

• O-DF - Open Data Format

• O-MI - Open Messaging Interface

• OCF - Open Connectivity Foundation

• OMA - Open Mobile Alliance

• XSF - XMPP Standards Foundation

1.3 IoT vertical applications

This section provides a short review of the most relevant vertical applications of IoT. In

general, several IoT devices are designed for consumer use. Those include connected vehicles,

sensors/actuators for home automation, wearable items, connected health devices, and

appliances with remote monitoring capabilities.

However, IoT applications go much beyond such scenarios.

P a g e | 19

As a consequence, the following is a brief classification of the main IoT vertical applications,

including services for consumers, organizations, industry, infrastructure, and military

applications.

1.3.1 Consumer Applications

1.3.1.1 Smart Home

In the smart home concept, IoT devices only represent a part of the larger system designed

for home automation. Home automation involve lighting system, heating and air

conditioning, media delivery and security systems. Home automation systems enable to

achieve energy savings (by automatically ensuring lights and electronics are turned off) and

remote usage of home appliances.

1.3.1.2 Elder care

One key application of a smart home or most in general of the Internet of Things is to support

quality of life for elder people. Smart home services might be used to provide assistance for

those with disabilities and elder people. In those scenarios, the connected home systems will

use assistive technology to accommodate an owner's specific disabilities. This will include the

use of different kind of sensors for movement, video, vital signs acquisition, etc.

1.3.2 Organizational Applications

1.3.2.1 Medical and healthcare

Clearly, the integration of the IoT in medical and health-related scenario represents an

extremely relevant vertical application. This leads to the concept of the Internet of Medical

Things (IoMT), which focuses on data collection and analysis for e-heath, and remote patient

monitoring.

1.3.2.2 Transportation

The Internet of Things can be successfully applied also in the field of transportation. In this

case, it can enable the integration of communications, control, and information processing

across various transportation systems. Typical applications include fleet management,

transportation systems monitoring and auditing.

1.3.2.3 V2X communications

P a g e | 20

Vehicular communications might benefit from the integration with the Internet of Things. In

this scenario, the vertical application is typically defined as vehicle-to-everything (V2X). V2X

includes vehicle to vehicle communication (V2V), vehicle to infrastructure communication

(V2I) and vehicle to pedestrian communications (V2P). For example, V2X represents a relevant

building block towards connected autonomous driving and smart road infrastructure.

1.3.2.4 Building and home automation

The concept of smart home can be generalized and applied to a wider range of scenarios, that

belong to the building and home automation vertical applications. Those application use IoT

technology to monitor and control the mechanical, electrical and electronic systems used

across different types of buildings (e.g., public and private, industrial, institutions, or

residential).

1.3.3 Industrial Applications

Industrial vertical applications belong to the so-called Industrial Internet of Things (IIoT). In

the IIoT, IoT devices are used to regulate and monitor industrial systems. The goal is to gather

and analyze data from connected devices, locations and people in order to improve industrial

processes and enabling simpler co-existence of human and robots.

1.3.3.1 Manufacturing

The application of IoT to manufacturing is based on the integration of the IoT with

manufacturing devices, leading to an integrated and smart cyber-physical space. Seamless

integration of manufacturing devices equipped with sensing, identification, processing,

communication, actuation, and networking capabilities leads to the definition of new

businesses and market opportunities.

1.3.3.2 Agriculture

Precision farming is enabled by the integration of the IoT in farming processes. This scenario

includes applications such as collecting data on temperature, rainfall, humidity, wind speed,

pest infestation, and soil content. The objective is to automate farming techniques when

possible, to enable informed decisions to improve quality and quantity of the results,

minimize risk and waste, and reduce effort required to manage crops. Sample applications

P a g e | 21

include farmers being able to monitor soil temperature and moisture from afar, and to apply

IoT-acquired data to precision fertilization programs.

1.3.4 Infrastructure Applications

In this framework, the term “infrastructure” is used to represent urban and rural

infrastructures, such as bridges, railways tracks, wind farms, etc. The usage of IoT

infrastructure can support monitoring of such critical infrastructure for detecting changes in

the structural conditions, and enabling to decrease associated risks and increase safety. Usage

of IoT devices is expected to provide benefits in the monitoring and operating infrastructure.

As a result, incident management and emergency response coordination should be improved,

as well as the quality of service, up-times and reduced costs of operation in all infrastructure

related areas.

1.3.4.1 Metropolitan scale deployments / Smart City

Smart city represents one of the most relevant applications of IoT concepts. A smart city is a

modern metropolitan area, planned to be wired and automated. By employing large IoT

deployments, it will be possible to reduce human intervention and allow a smart city to

improve the quality of life of the citizen, achieve better management and sustainability, etc.

Some smart city examples are being proposed, such as Songdo, South Korea, the first of its

kind fully equipped and wired smart city, with approximately 70 percent of the business

district completed as of June 2018.

1.3.4.2 Energy management / Smart Grid

The Internet of Things provides significant support to energy management, not only as a

provider for Internet connectivity but also in terms of tools to balance and optimize energy

consumption. Indeed, several energy-consuming devices (e.g. lamps, household appliances,

motors, pumps, etc.) already integrate Internet connectivity.

The IoT technologies also represent an enabler for the Smart Grid, which provides improved

management of electricity by incorporating Internet technologies in a utility-side application

scenario.

1.3.4.3 Environmental monitoring

P a g e | 22

Environmental monitoring represents a direct application of the Internet of Things. In

environmental monitoring networked sensors are employed to assist in monitoring air or

water quality, atmospheric or soil conditions, including remote areas where it might be

important to monitor the movements of wildlife and their habitats.

1.3.4.4 Living Lab

A particular example of infrastructure applications includes the notion of Living Lab. The Living

Lab concept is related to the integration of the research and innovation processes, with the

idea to bring innovation to the people or territory. In several cases, the integration of IoT

represents an enabler for this kind of activities.

1.3.5 Military Applications

IoT technologies can be integrated in the military domain for objectives related to

reconnaissance, surveillance, and other battlefield objectives. This leads to the definition of

the Internet of Military Things (IoMT).

IoMT involves the use of sensors, ammo, vehicles, robots, human-wearable biometrics, and

other smart technology for application and deployment on the battlefield.

1.3.5.1 Internet of Battlefield Things

The Internet of Battlefield Things (IoBT) represents an instance of the Internet of Military

Things. It is a project by the U.S. Army Research Laboratory (ARL) that focuses on the

application of IoT to enhance the capabilities of Army soldiers.

1.3.5.2 Ocean of Things

Similarily, the Ocean of Things is project led by DARPA to design an Internet of Things solution

for oceanic areas. The project is designed to establish an Internet of Things across large ocean

areas for the purposes of collecting, monitoring, and analyzing environmental and vessel

activity data.

P a g e | 23

1.4 Identification of key research directions and connections

1.4.1 Trends and Characteristics

This section describes the trends and characteristics of the Internet of Things. Indeed, the

major trend of the IoT in the last years was represented by the exponential growth of devices

connected to the Internet and controllable from the Internet.

On one side, the broad range of IoT applications described before underline a common trend

in the heterogeneity of devices belonging to the IoT eco-system. Indeed, IoT devices can be

extremely diverse in terms of specifics. However, most of them share some of the basic

characteristics described in the following sub-sections.

1.4.1.1 Intelligence

Ongoing research is focusing on integrating the concept of IoT with the concept of

autonomous control. This vision is steering towards considering the connected objects as a

key aspect for the design of an autonomous IoT.

Considering the architecture of the Internet of Things, intelligence can be deployed in three

different levels: IoT devices, Edge/Fog nodes, and Cloud computing. Intelligence can be

concentrated in one location or distributed, with the basic principle that positioning control

and decision-making at any level depends on the impact on the time sensitiveness of the

corresponding IoT applications.

As an example, we can consider a camera used for real-time obstacle detection in the

framework of autonomous vehicles. Considering the time constraints required for safety, it is

most appropriate to perform the prediction/recognition of obstacles locally on the vehicle,

rather than sending a huge amount of data to the Cloud and wait for the predictions back to

the vehicle.

1.4.1.2 Architecture

We can simplify the architecture of the Internet of Things by defining three tiers:

• Tier 1: Devices/Things

• Tier 2: the Edge Gateway

• Tier 3: the Cloud.

P a g e | 24

Figure 1-5: The IoT Architecture.

Tier 1 includes the “Things”, or networked devices, such as the sensors, actuators and other

forms of objects that might be connected.

Tier 2 consists of the Edge Gateway. The Edge Gateways are designed for aggregating sensor

data and providing additional processing capabilities, such as pre-processing of the data,

securing connectivity to cloud, using systems such as WebSockets, the event hub, and, even

in some cases, edge analytics or fog computing support.

• Cellular, WiFi, Mobile, DSL,
FibreCloud

• Thread, Bluetooth, Zigbee,
NFC, etc.Gateway

• Sensors, actuators, IoT enabled
devices, mesh networksThings

P a g e | 25

Finally, tier 3 includes the cloud environment. Typical IoT applications are deployed in the

Cloud, exploiting the scalability of the microservices or virtualized architecture.

One of the major characteristics of the Internet of things architecture is scalablity. Indeed, the

IoT should be capable of connecting a continually-increasing amount of devices. Some

relevant trends (some of those will be analyzed later on during the course) are outlined in the

next paragraphs:

• The overall IoT architecture should enable to interconnect billion of devices. As a

consequence, the Internet address space should be extended accordingly. For this

reason, IPv6 is expected to play a major role in the network layer.

• The requirement to support low power operation will require simplified networking

protocols. In this framework, IETF 6LoWPAN could represent a credible solution to

connect devices to IP networks.

• The presence of IoT brokers is expected in most application scenarios. For this

purpose, the IoT architecture should incorporate lightweight data transport solutions,

such as IETF’s Constrained Application Protocol, ZeroMQ, and MQTT.

• Scability will also be required in terms of the aggregate size of data flows potentially

being generated by IoT across the Internet. Local/distributed processing will require

proper edge or fog computing solutions.

1.4.1.3 Size Considerations

The Internet of things will represent an unprecedented size in terms of connected devices.

Some expectations predict 50 to 100 trillion connected objects, and the capability to track

and serve those objects. In urban environments, human beings are expected to be

surrounded by 1000 to 5000 trackable objects each.

In 2015 there were already 83 million smart devices in people's homes, expected to grow to

193 million devices by 2020. On the other side, online capable devices grew 31% from 2016

to 2017 (in one year) to reach 8.4 billion.

1.4.1.4 Space Considerations

A novel and common requirement deriving from the nature of the Internet of Things is the

need for estimating the precise geographic location of an object. This derives from the fact

P a g e | 26

that most “things” belonging to the IoT are sensors, and sensor location is usually important

for IoT applications.

For example, GeoWeb1 and Digital Earth2 are emerging IoT applications that become possible

only if things can be organized and connected by location.

1.4.2 IoT Challenges

Technologies characterized by rapid development might incur in profound security

challenges, as typically most efforts are related to the actual implementation of such

technological advances. For this reason, security is surely one of the biggest concerns in the

adoption of the Internet of things technology. However, this does not represent the only

challenge in the IoT eco-system.

1.4.2.1 Security

Internet of Things provides Internet connectivity to objects capable of operating in the real

world and of generating potential threats. Indeed, Internet of Things technology provides

access to new areas of data, and it can often enable to control physical devices. Already in

2014 it was possible to understand that many Internet-connected appliances could "spy on

people in their own homes". Those objects included smart televisions, kitchen appliances,

cameras, and thermostats.

This requires the definition of proper security protocols and architectures to protect the IoT

from attacks and avoid anomalous/malicious usage of its services. Some examples of ongoing

efforts in this area include:

• In 2015, The Internet of Things Security Foundation (IoTSF) was launched with the

mission to secure the IoT by promoting knowledge and best practices. The founding

members are technology providers and telecommunications companies, that are now

supported by large IT companies continually developing innovative solutions to

protect the security of IoT devices.

• In 2017, Mozilla launched Project Thing. The project aims at increasing IoT security by

routing IoT devices traffic through a safe Web of Things gateway.

1 http://geowebforum.com/
2 http://www.digitalearth-isde.org/

http://geowebforum.com/
http://www.digitalearth-isde.org/

P a g e | 27

1.4.2.2 Regulation

Also in IoT the risk exists that government regulations might take a long time to catch up with

the current state of technology. The problem is that with the rapid of IoT, providing new

advancements on a daily basis, governments suffer in catching up and as a consequence

businesses are often left without crucial information they need to make decisions.

The lack of strong and harmonized IoT regulations represent also a relevant reason why the

IoT remains a severe security risk, and the problem is likely to get worse as (with the evolution

of the IoT eco-system) the potential attack surface expands to include ever more crucial

devices.

1.4.2.3 Compatibility

A plethora of IoT solutions is available on the market, however they are rarely compatible.

Incompatibility might happen at several layer in the communication protocols stack, but also

in representation of information, etc.

Indeed, compatibility is current the biggest problem in unleashing the full potential of the

Internet of Things. Several standards are available for similar scenarios, and the market seems

to require years before settling on a single universal standard or a unifying IoT architecture.

In short-range connectivity, Bluetooth has long been the reference standard. However,

especially in home automation, several competitors have sprung up to challenge Bluetooth’s

mesh network offerings, including protocols such as Zigbee and Z-Wave.

Continued compatibility for IoT devices also depends upon users keeping their devices

updated and patched, which can be pretty difficult. When IoT devices that have to talk to each

other are running different software versions, all kinds of performance issues and security

vulnerabilities can result.

1.4.2.4 Bandwidth

Connectivity, and as a consequence bandwidth, is a bigger challenge to the IoT than experts

might expect. As the size of the IoT market continues along it exponential growth, bandwidth-

intensive IoT applications such as video streaming will soon start draining resources from

other services or generating unexpected congestion events. Moreover, the massive number

P a g e | 28

of communicating devices might represent a limiting factor for bandwidth, especially in the

network control plane.

1.4.2.5 Energy consumption

Most IoT devices (and sometimes even gateways) are battery powered and, in several cases,

applications require IoT sensors to run for months or years.

For this reason, energy management represents a clear challenge, that implies the utilization

of proper design techniques for optimization in operation, idle/sleep time management, and

in general energy-aware operation.

In the recent years, energy harvesting is playing a relevant role in this area.

1.4.2.6 Customers’ expectations

IoT is an exciting sector with a lot of potential to change the Society. Indeed, IoT is already

having a relevant impact on the way we live, work and play. This is generating high customers’

expectations, which are difficult for companies to follow and satisfy.

Indeed, businesses looking to enter this competitive and innovative sector should be

prepared for an ever evolving market and customers who always want a smoother and more

advanced experience.

P a g e | 29

2 Revision of Basic

Programming and IoT IDE

Author(s): Nearchos Paspalllis

This Photo by Unknown Author is licensed under CC BY

http://technologiesrunning.blogspot.com/2016/12/10-algoritmos-de-aprendizaje-automatico.html
https://creativecommons.org/licenses/by/3.0/

P a g e | 30

2.1 Introduction to Programming for IoT

A core component of most IoT systems is a microcontroller board used to interface various

components, such as sensors and actuators, as well as computing components such as NFC

readers, Bluetooth and WiFi network interfaces, etc.

The great success of Arduino and Arduino-like boards has fuelled a trend—commonly referred

to as the “Maker movement”3—which resulted in many powerful and affordable

microcontroller-based solutions. Such boards come in different sizes and shapes and offer

varying properties: computing power, memory size, pin types and numbers, battery and

power consumption, additional embedded components, and of course price.

All these boards are characterized by one important feature: they are “programmable”. This

means that you can develop your own custom program—featuring any functionality you

want—and run it on your targeted board. The program is generally used to enable your

system to read data from the sensors (e.g., the “temperature”), and to write data to actuate

change (e.g., via a “step motor”). Such interfacing is generally achieved via specialized

input/output pins and corresponding software drivers. Additionally, most microcontrollers

can implement common functionality such as computation and networking, i.e., exchange

data, typically via the Internet.

Programming such a microprocessor is relatively easy if you are at least familiar with the core

programming concepts. This document aims to provide a quick overview of these concepts.

While it helps to get to this point with some programming experience, it is also possible to

use this as your starting point in the adventurous world of programming.

2.2 Programming fundamentals

Computer programming has evolved over the decades, from 1st generation languages which

were very low-level (aka “machine language”) to general purpose, 3rd generation languages—

such as C/C++, Java, etc.4

3 Maker culture is discussed in Wikipedia: https://en.wikipedia.org/wiki/Maker_culture
4 Even higher generation languages exist but these are more problem specific rather than general purpose. These
include languages such as Python and SQL(4th generation) as well as Prolog, etc. (5th generation).

https://en.wikipedia.org/wiki/Maker_culture

P a g e | 31

This section focuses on the C programming language, as it is the language most frequently

used in the most popular microcontroller platforms, including Arduino and ESP8266.

2.2.1 Prerequisites

While you do not need to know programming to cover this section, you are expected to be

familiar with a couple of concepts and skills:

• Binary numbers: The binary system is a system for representing numbers—and any

other sort of information possible—using the binary digits of zero (0) and one (1).

• Logical (or Boolean) operations: These enable the formation of logical conditions. They

are commonly used for the formation of complex logical statements in your programs.

The most frequently used operands are the AND, OR and NOT.

• Using an Integrated Development Environment (IDE): Programs are expressed in high

level languages (such as C in this section) using special keywords and syntax. While it

is possible to write the listing of a program in any kind of text editor (including

Notepad), an IDE is more specialized and offers features which assist the developer.

For instance, they offer syntax highlighting, warnings and suggestions, debugging,

streamlining the build and deployment process, etc.

2.2.2 Programming concepts covered

This section is aimed as a refresher—or quick introduction—to programming for IoT. The

following concepts are covered:

• General overview of procedural programming.

• Variables and simple statements (including mathematic and logical expressions).

• Conditional statements.

• Loop statements.

• Function declaration and invocation.

2.3 Procedural programming

Procedural programming is one of the most fundamental programming paradigms and the

basis for newer paradigms such as the Object-Oriented Programming paradigm. Some of the

most popular languages using it include Fortran, COBOL, Pascal, and of course C.

P a g e | 32

In its most simple form, procedural programming consists of programming statements—i.e.

the simplest possible commands which can be executed independently—executed

sequentially, i.e. line by line. While the execution of programs line by line is simple and has its

merits, it lacks in modularity. For this purpose, code focusing on a single purpose can be

expressed as a smaller sub-program—a.k.a. a function—in C-terminology5 and be invoked as

needed.

Additionally, the typical line-by-line execution can be modified using conditional statements

and loops statements. These are further discussed in the following sections.

2.4 Variables, Expressions and Simple Statements

Variables are the most fundamental elements used in programming. They generally represent

values of various types, including numbers, text, etc. With the use of language-specified

keywords, they form expressions and statements. All these terms are discussed below.

2.4.1 Data Types

Some languages like JavaScript have a more flexible, implied type while others like C/C++ and

Java are so-called strictly typed languages. In the latter, all values must be declared to have a

specific type. How the language keywords interact with variables depend on their declared

type. For example, if two variables are numbers, then when printed they are automatically

transformed to text representing their decimal value.

In C, the basic data types are the following:

• int – used to encode integer numbers (i.e., with no fractional part).

• double – used to encode real, floating point numbers (i.e., with a fractional part).

• char – used to encode a character in an alphanumeric value (i.e., a letter in a text).

Examples of values with such types are:

• int x = 7; // here ‘x’ is a variable of type int, initialized to 7.

• double rate = 1.23; // here variable ‘rate’ is declared as a real number and

initialized to the value 1.23.

5 While in C/C++ sub-programs are called functions, in modern object-oriented languages—like Java—they are
called methods. The following terms have also been used with a similar meaning: sub-routines, sub-procedures.

P a g e | 33

• char initial = 'N'; // a variable of type character is declared with name ‘initial’

and initial value the letter “N”.

An important observation is that C does not specify an explicit Boolean/logical value type.

Instead, other types—typically int values—are used in its place, where the convention is

that the zero (0) binary value corresponds to FALSE and any other value (but typically 1)

corresponds to TRUE.

For example, the following variable can be used as a Boolean representing FALSE.

• int flag = 0; // the variable ‘flag’ is declared as int but with the intention to be

used as a Boolean-it is initialized to 0 which corresponds to False.

In practice, this lack of direct support of Booleans is considered one of the weak points of C,

which makes it more subtle to errors—especially to newcomer programmers. Newer

programming languages—such as Java—aimed to fix this by introducing explicit Boolean data

types.

Note also that C does not have direct support for text (e.g., words, sentences, etc.) but this is

implicitly supported where the corresponding values take the form of sequences of char.

All variables have three important properties: A name, a type and a value.

As C is a strictly typed language, all variables must be declared before they can be used. In

other words, the following program would fail as the variable ‘x’ is undeclared:

x = 2; // cannot succeed unless the variable ‘x’ is declared first
Listing 1: Variables must be declared first before use

A variable can be declared simply by specifying its type first, and its name next. Optionally, a

variable can also be initialized at declaration using the equals character ‘=’ and the initial value

as a literal6.

This is illustrated in the following examples:

6 A ‘literal’ is a value expressed inside the source code. Numbers are typically expressed using the corresponding
text (using digits 0-9) and characters are expressed as the corresponding character in single quotes (e.g. ‘k’).

P a g e | 34

char a; // a new variable is declared with type ‘char’ and name ‘a’.

double z = 121.35; // a new variable of type ‘double’ and name ‘z’ is

declared and initialize to the value ‘121.35’

Listing 2: Variable declaration examples

2.4.2 Comments

Every programming language has a form of adding comments to the code. These are defined

to help the programmers by serving as extra information reminding why/how code works.

Comments are also important for narrating code expected to be used/maintained by others.

Good use of commenting is considered an important skill for programmers—among other

qualities which relate to writing legible and structured code. In principle, always remember

that clarity is very important, and can have an important impact on the success of your code.

In C, comments can be added in two main ways:

• Using the double slash characters to signify that the rest of the line is a comment.

• Using the double markers of slash and star to indicate the start (/*) and the end (*/)

of a comment.

These two methods of comments can be better illustrated in the following examples:

// this is a single line comment

int x = 1; // single line comments can be added after a statement

/* Sometimes a comment

can take multiple lines.

In this case the multi-line markers

are more suitable. */

Listing 3: Examples of comments in C

2.4.3 Expressions

Expressions are either part of, or a full statement. Most commonly, they take the form of

mathematical or logical expressions.

In terms of mathematical expressions, the typical mathematics operators for addition,

subtraction, multiplication and division work as expected. These are the ‘+’, ‘-’, ‘*’, ‘/’

respectively. An additional operator called module is represented by the ‘%’ symbol.

The following examples illustrate the use of operators:

P a g e | 35

int x = 10; // declare and initialize a variable ‘x’ with the value 10

int y = 1 + 2; // declare a variable ‘y’ and initialize with the result of

adding 1+2

y = 10 * 2; // modify ‘y’ so its value is replaced with the result of

multiplying 10*2, i.e. the new value of ‘y’ will be 20

Listing 4: Simple examples demonstrating the use of operators

Variables can also be used in the formation of expressions—besides being the assigned value.

For example, a variable can be assigned the value of another variable—possibly as part of an

expression.

Importantly, a variable can be defined as a function of itself. For example, the statement

“x=x+1” doesn’t mean that x is equal to itself plus 1, but that the new value of x is computed

by adding 1 to the current value of x. In this case it is important to note that the semantics of

the equals ('=') symbol is not equality but assignment7. The assignment essentially means:

first compute the value of the expression to the right of the assignment symbol, then use that

to replace the value of the variable at the left of the assignment symbol. Note that in

pseudocode, the assignment is often denoted with a left arrow, i.e. ‘<-‘, as a means of

disambiguation (e.g. ‘x <- x +1’) where in many programming languages including C/C++ and

Java, it is denoted with the single equals symbol (i.e. ‘x = x + 1’).

The semantics of assignment statements are illustrated in the following examples:

int z = x; // declare a variable ‘z’ and initialize it with the value of

x, i.e. 10

z = x + y; // change the value of a variable ‘z’—make it equal to the

result of adding x and y, i.e. 10+20, so the result will be 30

z = 10 * z; // change the value of ‘z’ by making it equal to the former

value of ‘z’ times 10, i.e. 10*30=300

Listing 5: Examples of assignments

The precedence defines the priority with which operations are executed. For instance,

multiplication and division take precedence—i.e., execute before—addition and subtraction.

Keep in mind that precedence can be overridden using brackets. These are illustrated in the

following examples:

7 In programming, the assignment is operation of modifying the value of a variable. In many languages it is
denoted with the equals symbol ‘=’. In this regard, the equality check operator is frequently marked with a
double equals symbol, i.e., ‘==’.

P a g e | 36

int x = 1 + 2 * 3; // ‘x’ gets the value 7 (not 9) because multiplication

has precedence over addition

int y = 9 – 6 / 3; // ‘y’ gets the value 7 (not 1) because division has

precedence over subtraction

Listing 6: Demonstrating precedence of operations

Quite frequently, in C/C++ the following special operators are used:

• ‘++’ Increment by 1. For example, ‘x++;’ is equivalent to ‘x = x+1;’.

• ‘--’ Decrement by 1. For example, ‘y--;’ is equivalent to ‘y = y-1;’.

• ‘+=’ Increment by value. For example, ‘x+=10;’ is equivalent to ‘x = x+10;’.

• ‘-=’ Decrement by value. For example, ‘y-=4;’ is equivalent to ‘y = y–4;’.

• ‘*=’ Multiplied by value. For example, ‘z*=2;’ is equivalent to ‘z = z*2;’.

• ‘/=’ Divided by value. For example, ‘w/=3;’ is equivalent to ‘w = w/3;’.

The ‘++’ and ‘--’ are unary operators—i.e., unlike most operations (such as addition and

multiplication) which operate on two operands, unary operators apply to a single operand.

For this reason, their precedence is important. There are two ways to apply them, the so-

called postfix (after) and prefix (before). The postfix is applied after the value is used in its

expression. The prefix is applied before. This is demonstrated in the following examples:

int x = 10; // initialize ‘x’ with value 10

int a = x++; // a gets the original value of x, i.e. 10, and afterwards, x

is increased to 11

int b = ++x; // x is first increased further to 12, then assigned to b,

which becomes also 12

x*=2; // x is doubled, i.e. becomes 24

int c = x--; // c gets the original value of x, i.e. 24, and afterwards, x

is decreased by 1 to 23

int d = --x; // x is first decreased by 1 to 22, then assigned to d which

becomes also 22.

Listing 7: Demonstrating prefix and postfix use of unary operators

Besides arithmetic operations, various logical operations can also be used for computing

Boolean values. Recall that in C, Boolean values are stores as integers, where zero indicates

False and non-zero values indicate True.

P a g e | 37

The following operators are commonly used for comparing arithmetic values, with a Boolean

result:

• ‘<’ Smaller than. For example, ‘x<10’ is true if x is smaller than 10, false otherwise.

• ‘<=’ Smaller than or equal to. For example, ‘y<=-2’ is true if y is -1 or smaller, false

otherwise.

• ‘>’ Greater than. For example, ‘myVal>2.13’ is true if ‘myVal’ is greater than 1.23, false

otherwise.

• ‘>=’ Greater than or equal to. For example, ‘z>=-9.99’ is true when z is equal to -9.99

or greater.

• ‘==’ Equal. For example, ‘sum==0’ is true if the value of ‘sum’ is zero, false otherwise.

At this point we should point out that while equality is rather straightforward for integers, it

is less so fractional numbers. For instance, the expression 9.0-8.3-0.7 should normally result

0.0. However, there are some case where this is not exactly the case. The reason has to do

with the representation of real-precision numbers in binary format. As real numbers cannot

be perfectly fit in fixed-size binary values (typically 64bits are used for each ‘double’ value), it

is possible that the result of an expression expected to be zero is some non-zero value, e.g.

0.000000001. Where this could lead to logical errors in your program, it is advised to instead

check if the difference of your checked value against zero is smaller than a predefined error

threshold. For example, you could check if (9.0-8.3-0.7 < 0.001) which would be true if the

expression was sufficiently small, i.e., close to zero. In reality you would have to check both

ways, as the result could be a very small positive or negative value. Consider the following

example for checking if a value x is (nearly) zero:

double e = 0.000001; // in this example, 1 millionth is the threshold

double x = 9.0-8.3-0.7; // assign x some value which you want to check if

it is zero

int isZero = x>-e && x<e; // the ‘isZero’ variable is true if x within (-

e, e) – note that ‘&&’ is the logical AND operator discussed below

Listing 8: Checking if a value is close enough to zero

P a g e | 38

Besides arithmetic operations, logical operations can be used for forming logical expressions.

The main logical operators—in order of precedence—are the following:

• ! Logical NOT

• && Logical AND

• || Logical OR

For example, consider the following code listing:

int day = 4; // where Sunday is 0, Monday 1, ..., Saturday 6

double temperature = 32.7; // assume temperature in Celsius

int weekend = day == 0 || day == 6; // equality has precedence over

assignment, so that value of ‘weekend’ is false because (day == 0) is false

and (day == 6) is also false

int mustGoToBeach = weekend && temperature > 30; // the value of

‘mustGoToBeach’ is set to zero/false as the value of ‘weekend’ is false—

even though the value of (temperature > 30) is true

Listing 9: Demonstrating logical operators in C

The precedence of the most relevant operators is listed below—from higher to lower

precedence:

• ++ and -- // Postfix increment and decrement

• ++ and -- // Prefix increment and decrement

• ‘!’ Logical NOT

• * and / and % // Multiplication, division and remainder

• + and - // Addition and subtraction

• < and <= and > and >= // arithmetic comparison operators

• == and != // Equality and inequality operators

• && // Logical AND

• || // Logical OR

• = and += and -= and *= and /= // simple assignment and assignment by

addition/subtraction/multiplication/division

When an expression contains two or more operations listed above, then their execution

follows the above precedence. This means that the one with the highest precedence executes

first and the result replaces it in the expression, then the one with the second highest

P a g e | 39

precedence, and so on. For example, an expression containing an assignment, a logical AND,

and a multiplication will be executed resolving the operations in this order: multiplication,

then logical AND, then assignment.

Parentheses can be used to override the order, just like in mathematical formulas.

The full list of operator precedence in C can be found online at cppreference.com8.

2.4.4 Code Blocks

Code blocks are groups of statements at the same level. An important characteristic of code

blocks is that they also define a name space, i.e., a space where the declared variables are

recognized.

Code blocks are defined using the curly brackets ‘{‘ and ‘}’. As it will be discovered later, they

are also commonly used in line with defining conditionals, loops, and functions.

A variable declared in a code block is visible inside that block, and all nested blocks. See the

following example.

{

 int x = 1;

 // x is visible here

 {

 // x is visible also here, as this is a block nested in the block where

x was declared

 }

}

// x is not recognizable here, as it was declared in another code block

Listing 10: Examples of nested code blocks and implication of variable visibility

Another important note for code blocks, also seen in the previous example, is that code blocks

can assist with code comprehensibility and safety. Specifically, by properly using code blocks,

you can limit variable visibility to the space needing it, thus making it harder to make

mistakes9.

8 See https://en.cppreference.com/w/c/language/operator_precedence
9 The idea of breaking code down to individual parts with minimum—and controlled—interaction with each
other is a foundational idea of code reusability and readability, originally proposed by Parnas in his paper titled
“On the Criteria to Be Used in Decomposing Systems into Modules”—see
https://www.win.tue.nl/~wstomv/edu/2ip30/references/criteria_for_modularization.pdf.

https://en.cppreference.com/w/c/language/operator_precedence
https://www.win.tue.nl/~wstomv/edu/2ip30/references/criteria_for_modularization.pdf

P a g e | 40

Also, for better readability, the programmer is advised—but not enforced10—to use proper

indentation, i.e. consistent spacing before each statement in a new line, reflecting the nesting

depth of the line.

2.4.5 Statements

The statements are the building blocks of any program. In C/C++, statements are terminated

by the semicolon ‘;’ character. Effectively this means that any statement must end with a

semicolon.

In theory multiple statements can be added on the same line, but in most cases, this is

discouraged as it leads to cumbersome, hard-to-read code.

In C, there are three main types of statements: Assignments, Conditionals, and Loops.

Assignments have been discussed previously, and Conditionals and Loops are discussed in the

following sections.

Statements can also comprise of function calls. Function calls can be used to interact with

lower-level operations too, such as reading/writing from a file or printing to the console—aka

the screen.

For example, a simple way to write a message in C, is by using the printf function. A simple

‘Hello World’ program11 in C is as follows:

#include <stdio.h>

int main() {

 printf("Hello, World!\n");

 return 0;

}

Listing 11: Hello World program in C

When executed, this code produces the unsurprising output:

Hello World!!

10 Some modern programming languages—most notably Python—force programmers to be consistent with
indentation as it is by definition the method with which nesting and code blocks are defined in code written for
Python.
11 In most programming languages, the ‘Hello World’ is the starting point of the journey of learning that
language. It comprises of a bare-bones program which simply prints a greeting message on the screen, typically
‘Hello World’.

P a g e | 41

Here is a line-by-line explanation of this code:

• The ‘#include <stdio.h>’statement is used to import a library. In this example,

the library is a standard library containing functions like ‘printf’ (see below) for

printing messages to the console. We will be using various libraries when writing code

for Arduino in order to interface with different hardware components.

• The starting point of a C program is the ‘main’ function12. By convention, this function

is named main, takes no arguments13 and returns an integer (normally zero if

everything was OK). We will later see that Arduino-based programs use a different set

of methods for starting up—instead of main. It should be noted that as main is a

function it explicitly defines a code block which is marked with the standard

starting/ending curly brackets.

• The printf is a function defined in the stdio.h file—imported in the first line. It

allows for printing text on the console. In C, text14 can be declared as code literal using

double codes, e.g. “Hello World” is the literal text corresponding the sequence of

characters ‘H’, ‘e’, etc. The ‘\n’ is a special character meaning “line return” and has the

semantics of moving the cursor to the next line of the console. As IoT-based platforms

often come with no display, we will see that some development platforms allow

printing to a connected computer for debugging purposes.

• Finally, the return 0; statement terminates the function (main) which effectively

terminates the program. By convention, the returned value should be zero if the

programme succeeded, and non-zero if it failed for any reason.

2.4.6 Conditionals

The conditionals are simple statement which enable the program to respond to a condition

(commonly the value of a variable) by following one or another path.

There are two main forms of conditionals in C:

1. if <condition> { one or more statements ... }

12 Functions are discussed in another subsection below.
13 There are variations of the ‘main’ function which provide arguments and allow the programmer to read and
handle input from the user—input which is specified when the program is called from command line.
14 In programming, text values are also commonly termed strings or alphanumerics.

P a g e | 42

2. if <condition> { one or more statements ... } else { one or more

statements ... }

In the first case, the statements enclosed in the curly brackets are executed only if the

condition is true. In the second case, the statements enclosed in the first curly brackets pair

are executed if the condition is true, otherwise the statements enclosed in the second pair is

are executed.

The if-conditional is illustrated in the following example:

#include <stdio.h>

int main() {

 int day = 5; // assume Saturday=0, Sunday=1, Monday=2, ..., Friday=6

 if(day==0 || day==1) { // if ‘day’ equals 0 or 1 ...

 printf("Weekend! Hooray!\n");

 }

 return 0;

}

Listing 12: Example demonstrating the use of if conditionals

This example will produce the output15:

Weekend! Hooray!!

The if-else-conditional is illustrated in the following example:

#include <stdio.h>

int main() {

 int day = 5; // assume Saturday=0, Sunday=1, Monday=2, ..., Friday=6

 if(day==0 || day==1) { // if ‘day’ equals 0 or 1 …

 printf("Weekend! Hooray!\n");

 } else {

 printf("Weekday... :-(\n");

 }

 return 0;

}

Listing 13: Example demonstrating the use of if-else conditionals

15 Question: What would the output be if the value of day were 4 (in the Listing 12)?

P a g e | 43

This example will produce the output16:

Weekday... :-(

In general, the condition can be any expression which can be resolved to true or false17.

This can combine Boolean values with logical operators (and, or, not) as well as arithmetic

comparisons, etc.

Finally, note that the curly brackets can be omitted when there is just one statement.

However, it is a good practice to always use them, even for enclosing just one statement, as

this improves the readability of the code.

2.4.7 Loops

One of the main strengths of computers is that they can execute the same commands again

and again, tirelessly and super-fast. From the programmer’s perspective, this usually involves

the use of loops.

There are two main forms of loops in C: using the while and the for keywords.

The former even has two variations, which are summarized as follows:

1. while <condition> { one or more statements ... }

2. do { one or more statements ... } while <condition>

In the first variation, the condition is checked first, and the statements are executed if the

condition is true. This is repeated until the condition becomes false18.

In the second variation, the condition is checked last, which means that the statements always

execute at least once. This is used when the intended logic requires that: For example, if you

need to write a program where you ask the user to make a choice and then decide whether

to exit or not based on their input, the second variation is a better fit.

16 Question: What would the output be if the value of day were 4 (in the Listing 12)?
17 For conditionals where the operand is a number (e.g. integer) then it is resolved to false if it equals zero, and
to true in all other cases.
18 This adds a risk where in poorly defined code, the condition is always true. This is commonly referred to as
infinite loop. Programmers are advised to be extra careful when they set the conditions which terminate loops.

P a g e | 44

The use of while-conditions is illustrated in examples as follows:

#include <stdio.h>

int main() {

 int x = 1; // define a variable ‘x’ and initialize its value to 1

 while(x < 24) { // repeat while x is smaller than 24

 x = x * 2; // in each loop, duplicate the value of ‘x’ ...

 printf("x: %d\n", x); // ...and print its value

 }

 return 0;

}

Listing 14: Example demonstrating the use of while loop

This example produces the output:

x: 2
x: 4
x: 8
x: 16
x: 32

The code is explained in its comments. It basically initializes a variable to 1 and then doubles

its value in each iteration. As the value is doubled before printing, the first value that appears

in the output is ‘2’.

Note that the command printf can be used to also format variable values appearing in the

printed text. In this case, the value of ‘x’ is included in the text as an integer with the notation

%d19.

The for-loop is defined as follows:

1. for (<init>; <check>; <step>) { one or more statements ... }

19 The printf command, along with the different formatters it supports are described online at
https://www.tutorialspoint.com/c_standard_library/c_function_printf.htm

https://www.tutorialspoint.com/c_standard_library/c_function_printf.htm

P a g e | 45

Again, the use of while-conditions is better illustrated in an example as follows:

#include <stdio.h>

int main() {

 for(int i = 1; i < 10; i++) { // repeat for values of i in the range 0..9

 printf("i: %d\n", i); // in each loop, print the value of ‘x’ ...

 }

 return 0;

}

Listing 15: Example demonstrating the use of while loop

This example produces the output:

i: 1
i: 2
i: 3
i: 4
i: 5
i: 6
i: 7
i: 8
i: 9

Effectively, the for statement defines three arguments: An initializer, e.g. ‘int i = 0’ in

this example, a conditional check, e.g. ‘i < 10’, and a step increment, e.g. ‘i++’. These three

arguments are separated by semicolons ‘;’.

The initializer executes first, exactly once. The conditional check is evaluated in every iteration

before the execution of the statements—if true they execute, otherwise the loop terminates.

Last, the step increment executes in every iteration after the execution of the statements.

Note that in the above example, the printed values are 0 to 9 (and not 10). The reason for

this is that the continuation check ‘i < 10’ is evaluated before the execution of the

statements. So when ‘i’ eventually becomes 10 (and thus the continuation check becomes

false), the loop terminates immediately, and the statements are not executed.

For loops are commonly used to iterate all the indices of arrays—see below.

Similar to what was discussed with conditionals, the curly brackets can be omitted when there

is just one statement. However, like before, it is a good practice to always use them, even for

enclosing just one statement, as this improves the readability of the code.

P a g e | 46

2.4.8 Arrays

A commonly used and widely useful data type is the array. These are sequences of values.

They are commonly stored in consecutive addresses in the computer memory. They are

accessed directly using an index—which in C is defined using square brackets ‘[‘ and ‘]’.

An array has a size, which is defined at initialization—also using square brackets. The size

indicates the number of values it contains. By convention, the address of the first element is

at index 0, the next one at 1, and the last one at size-1.

So for example, for an array named ‘a’ of integers with a size 10 (i.e. containing 10 elements),

the first one can be accessed with a[0], the second one with a[1], etc. The last one is accessed

at index size-1, i.e. with a[9] in this case.

These are illustrated in the following example:

#include <stdio.h>

int main() {

 int a[3]; // create an array of integers named 'a' with 4 values

 a[0] = 10; // initialize the first element to 10

 a[1] = 20; // initialize the second element to 20

 a[2] = 30; // initialize the third element to 30

 a[3] = 40; // initialize the fourth element to 40

 printf("a[0]: %d\n", a[0]); // print the value of the first element

 printf("a[3]: %d\n", a[3]); // print the value of the last element

 return 0;

}

Listing 16: Illustrating the use of arrays in C

The array is first declared, specifying its size. Next the four elements of the array are explicitly

assigned a value. Last, the values of the first and last elements are printed.

A more complex example, showing how loops can be used to iterate all the elements of an

array is listed below:

P a g e | 47

#include <stdio.h>

int main() {

 const int SIZE = 5; // constants are in capitals by convention

 int a[SIZE]; // create an array of integers with the given size

 for(int i = 0; i < SIZE; i++) { // repeat for i in the range 0..SIZE-1

 a[i] = i+1; // make each element equal to its index plus 1

 }

 for(int i = 0; i < SIZE; i++) {

 printf("a[%d]: %d\n", i, a[i]); // print the index and value of each

 }

 return 0;

}

Listing 17: Using a for loop to iterate all the elements of an array

This listing includes the following:

• First, note the use of the const keyword. It stands for constant and it is useful for

defining values that you know should not change20. In this case the SIZE is set to 521.

• An array named ‘a’ is defined and initialized to have a specified size.

• The first for-loop is used to iterate all the elements of the array and set the value of

each one to that of the corresponding index plus 1, i.e. ‘i+1’.

• The second for-loop prints the value of each element in ‘a’.

When executed, this listing produces the following output:

a[0]: 1
a[1]: 2
a[2]: 3
a[3]: 4
a[4]: 5

2.4.9 Functions and Function Calls

In the previous sections we explained how built-in functions are called. However, functions

are incredibly useful to also enable modularity in your code. For this, you need to be able to

define and use your own, custom functions.

20 This is good because it clarifies to anyone reading the code that this value is constant—i.e. cannot change. If
the value is modified—e.g. by mistake—in a later version, the problem is easily spotted as the compiler will
generate an appropriate error message.
21 Feel free to modify the value of SIZE and see how it affects the output. Make sure to try out some corner
cases, like zero.

P a g e | 48

In C, functions can return a value, similar to how mathematical functions are formed. Or they

can execute some statements without returning anything, like we have seen with ‘printf’.

In their more general form, functions have the following elements:

<return_type> <function_name>([optional parameter list]) {

 <one or more statements>

}

The return_type is a built-in or custom data type, like int, double, String, etc. When a

function is not required to return anything, it is marked with the special return type of ‘void’.

The function_name must be a valid, non-reserved keyword. Examples are ‘myFunction’,

‘f1’, etc. However, good programming practice dictates we use meaningful names for

function names, like ‘print’, ‘computeCircumferance’, etc. The same applies for variables

and parameters.

The parameter_list is an optional (i.e. possibly empty) list of parameters to be passed to

the function. These are specified in brackets and their values are normally used in the body

of the function to form the answer. It is a good programming practice to avoid modifying the

parameters. Furthermore, parameters are passed by-value by default in C. This means that a

copy of the variable is created and passed, so even if the value is modified in the body of the

function, this is not reflected in the original variable. Note this only applies to standard

variables. Variables which are memory addresses, like pointers and arrays are passed by-

reference by default which means their modification is reflected in the original variables. Note

that explaining the underlying mechanics of pointers and arrays is an important part of C/C++,

which however is not covered in this chapter22.

Finally, the function body is completed with a pair of curly brackets which enclose one or

more statements23. This is where you specify the code to execute when the function is called.

Parameters can be used by name. When a returned value is needed, that can be specified

with the ‘return’ statement, which naturally also terminates the function.

22 Pointers and Arrays are significant elements of C/C++. While these are besides the scope of this chapter,
readers are encouraged to read about them in additional resources. For example, this is a good starting point:
https://books.goalkicker.com/CBook/.
23 In practice a function can have an empty body too, but this is unlikely to be of any use.

https://books.goalkicker.com/CBook/

P a g e | 49

For example, consider this function which prints a square with the specified side size.

#include <stdio.h>

void square(int side) {

 if(side < 1 || side >> 10) { // if side not 1..10, return immediately

 printf("Side must be 1..10!\n");

 return;

 } else { // side is 1..10

 for(int x=0; x<side; x++) {

 for(int y=0; y<side; y++) {

 printf("*");

 }

 printf("\n"); // move to next line

 }

 }

}

int main() {

 square(4);

 return 0;

}

Listing 18: Defining a function for printing a square of the specified size

When executed this program produced the following output:

When the code is changed to call the function with an invalid parameter, e.g. -3, the output

is as follows:

Side must be 1..10!

Note that it is possible to call a function from within itself. This is called recursion. In most

cases recursion can be avoided, and when possible, it should be avoided, both for

performance purposes but also to keep your code clean and comprehensible.

For example, a classic problem to demonstrate recursive function is the Factorial number24.

This can be defined as a recursive function, and as an iterative function, as shown below.

24 https://en.wikipedia.org/wiki/Factorial

https://en.wikipedia.org/wiki/Factorial

P a g e | 50

#include <stdio.h>

int factorial_recursive(int n) {

 if(n == 1) return 1;

 else return n * factorial_recursive(n-1);

}

int factorial_iterative(int n) {

 int p = 1;

 for(int x=2; x<=n; x++) {

 p = p * x;

 }

 return p;

}

int main()

{

 printf("Factorial values\n");

 printf("i, recursive, iterative\n");

 for(int i = 1; i<=5; i++) {

 printf("%d: %d, %d\n", i, factorial_recursive(i),

factorial_iterative(i));

 }

 return 0;

}

Listing 19: Recursive and equivalent iterative implementations of Factorial sequence functions

The output of this program is as follows:

i, recursive, iterative
1: 1, 1
2: 2, 2
3: 6, 6
4: 24, 24
5: 120, 120

Note how the corresponding functions return integer values.

2.5 Integrated Development Environment

An Integrated Development Environment (IDE) is specialized software which provides various

tools to software developers to specify, test, debug, manage, and deploy code.

In practical terms, IDEs are used to improve the performance of software developers, as they

can simplify many tasks, minimize the time it requires to do other tasks, and at the same time

minimize the risk of errors and bugs.

Individual programming languages and platforms have various IDE options. For example, Java

has multiple popular IDEs like IntelliJ IDEA, Netbeans, Eclipse, etc. At the same time, Android

P a g e | 51

developers use primarily the Android Studio IDE, even though they mostly use Java. Similarly,

code written for .NET is predominantly developed using Microsoft’s Visual Studio.

In terms of C, and especially for IoT applications, one of the most popular frameworks is the

Arduino IDE. Despite its name, it is not limited to Arduino boards, but it can be used for coding

other popular platforms too, like ESP8266, etc.

Figure 2-1: The Arduino IDE

The Arduino IDE is available for free both as an online, web-based tool (which requires a web-

browser plugin) and as a standalone app for Windows, MacOS and Linux25. Another popular,

free IDE is Microsoft’s Visual Studio Code, also available for Windows, MacOS and Linux26. In

this book we use the Arduino IDE27. A summary of what it looks like is also shown in Figure

2-1.

The next chapter covers in detail the use of Arduino IDE for software development targeting

IoT.

25 You can access both the web and the downloadable versions of Arduino IDE at: https://www.arduino.cc
26 You can get MS Visual Studio Code from: https://code.visualstudio.com
27 A description of the features of this IDE are available at https://www.arduino.cc/en/Guide/Environment

https://www.arduino.cc/en/main/software
https://code.visualstudio.com/
https://www.arduino.cc/en/Guide/Environment

P a g e | 52

2.6 Practice exercises

For practice, complete the following challenges.

• Edit the code in Listing 18 to print a hollow square. Extend the allowed range of values

to 1..20. A hollow square is one where only the borders are drawn. For example, a

hollow square of side 3 would look as follows:

* *

• Learn about Fibonacci numbers28, and edit the code shown in Listing 19 to compute

the corresponding sequence of Fibonacci numbers in both a recursive, and iterative

manner.

2.7 Concluding remarks and further resources

This chapter provides a quick introduction to Programming with the C language. Naturally,

programming itself is a separate topic and requires its own book (or books).

This chapter aimed at quickly introducing the reader to programming. It is expected that most

readers are already familiar with the fundamentals of programming and they use this as a

refresher, or a revision of the equivalent programming concepts as applied in C.

The following chapter puts this knowledge in practice by guiding the reader through multiple

IoT-related programs expressed in C. Readers who feel they need to further enhance their

fundamental programming skills before endeavouring to IoT programming are encouraged to

go through the following resources.

2.7.1 Further resources

First, the reader is encouraged to refer to these useful online resources for covering the

fundamentals of programming in C in more detail.

• C Interactive Tutorial - https://www.learn-c.org/

The "Learn C" is a free interactive tutorial which can quickly introduce you to the basics

of C. Conveniently, the tutorial includes interactive elements, which execute directly

on the Web Browser, foregoing the need to download and install an programming

28 https://en.wikipedia.org/wiki/Fibonacci_number

https://www.learn-c.org/
https://en.wikipedia.org/wiki/Fibonacci_number

P a g e | 53

environment. The content of this tutorial is split in two sections: “Learn the Basics”

and “Advanced”. The former is highly recommended, while the latter is only for those

interested to learn C in higher detail—but not too critical for IoT programming.

• Kernighan B. and Ritchie D.: The C Programming Language, Pearson; 2nd Edition,

April 1, 1988
"The C Programming Language" by Brian Kernighan and Dennis Ritchie is considered

the seminal book on C. You can use this if you are interested to learn everything about

the C language.

• Stroustrup, B.: The C++ Programming Language, Addison-Wesley 4th Edition, ISBN

978-0321563842. May 2013 - https://www.stroustrup.com/4th.html

In case you want to go deep software development with C/C++, this is an extensive

book covering many advanced topics, written by the creator of C++, Bjarne Stroustrup.

Additionally, the reader is pointed to the following IDEs (Integrated Development

Environments) which provide a modern and powerful approach to software development:

• Visual Studio Code - https://code.visualstudio.com

This is a free IDE developed by Microsoft. It is widely popular as it is free, extensible

(via plugins) platform independent, and with a very large user base which makes it

easy to get support. Note that one of the many plugins available for Visual Studio Code

is one which enables interfacing with Arduino microcontrollers.

• Arduino Software - https://www.arduino.cc/en/main/software

• The Arduino website provides two useful tools: First a downloadable editor (IDE)

which enables defining the code, compiling it, and 'uploading' it to a connected

microcontroller (this includes Arduino hardware but also other popular platforms like

the ESP8266-- https://en.wikipedia.org/wiki/ESP8266). Second, an equivalent editor

is made available as a Web Based tool (but requires a plugin for enabling connection

to hardware components).

https://www.stroustrup.com/4th.html
https://code.visualstudio.com/
https://www.arduino.cc/en/main/software
https://en.wikipedia.org/wiki/ESP8266

P a g e | 54

3 Software Development for

IoT Embedded Systems

Author(s): Nearchos Paspallis

This Photo by Unknown Author is licensed under CC BY-SA

https://commons.wikimedia.org/wiki/File:Software_dev_med.jpg
https://creativecommons.org/licenses/by-sa/3.0/

P a g e | 55

3.1 Introduction

Software development is required throughout the various layers of any IoT architecture (see

section 4 for a description of possible IoT architectures and their layers). In most commercial

settings, IoT systems comprise of both endpoints (i.e., microprocessors or microcontrollers

with attached sensors and actuators) as well as backends (i.e. cloud-based systems for

collecting, aggregating, processing and complementing the IoT systems).

While backends can support a wide range of services—from access to large data, storage, and

advanced functionality which could include geofencing, Machine Learning (ML), etc.—the

endpoints are commonly where the data is collected and processed in the first place.

Figure 3-1: Simple IoT architecture: Endpoints, comprising of microprocessors, microcontrollers,
sensors and actuators interact with backends to form an IoT system

For the purposes of this section, we focus on software development related to the endpoints.

This usually includes low-level code to interface with appropriate hardware (e.g., sensors and

actuators), pre-process data (e.g., summarize, filter or compress it), and connect via the

network to interface with appropriate Backends.

Microprocessor-based systems, like Raspberry and similar, feature full-scale operating

systems enabling them to reuse many of the existing libraries and packages. However, cost

and power limitations often render microcontrollers, like Arduino and ESP8266, as the more

suitable choice for this purpose.

This section focuses on software development using Arduino, one of the most popular and

widely available microprocessors as of today. We cover elements of software development

which include interfacing with hardware components—including wiring the respective

components—as well as defining logic for realizing IoT embedded systems.

P a g e | 56

3.2 The development environment

For the purposes of this section, we use the Arduino Software (IDE) which is freely available

online29. This software is available both as a stand-alone application (for Windows, Mac OS X

and Linux) as well as a web-based system—which however requires a Web browser plugin to

become fully functional. For the purposes of this section, it is assumed that you have the

Arduino IDE stand-alone application available on a computer.

While the Arduino IDE is developed and formally used for Arduino-compatible devices,

various IDE plugins allow its use also with similar microcontrollers like the ESP8266.

3.2.1 Tour of the IDE

When launched, the IDE looks as shown in Figure 3-2.

Figure 3-2: The Arduino IDE on launch

The main areas of the editor are the following:

• Menu: Provides access to the various functionalities and options available in the IDE.

29 https://www.arduino.cc/en/Main/software

https://www.arduino.cc/en/Main/software

P a g e | 57

• Action buttons: provides quick access to frequently used actions. Specifically, to

compile/verify, upload, create a new project, open an existing project and finally save

the currently edited project.

• Editor: is the main area, where you type and edit the code for the targeted hardware.

• Compiler output: prints messages related to the compilation of the code ahead of

uploading it to the targeted hardware.

• Port info: displays information about the targeted architecture (e.g. Arduino, ESP8266,

etc.) as well as the port where the hardware is connected to.

3.2.2 Tour of the Arduino UNO

One of the most used microcontroller boards is Arduino UNO. It is popular because of its low

cost and of the wide availability of online resources for it, including libraries for interfacing it

with sensors and actuators, as well as code examples for both simple and complex projects.

Figure 3-3: Schematic of a typical Arduino UNO (Jameco.com, 2015)

P a g e | 58

A typical view of the Arduino UNO board along with a description of its main components and

pins is illustrated in Figure 3-3. Like most Arduino UNO and NANO boards, the main chip used

in them is the ATmega32830. An external 7-12 Volt connector (top left) can be used to power

up the board. However, while developing on a board, that is typically powered directly by the

connected USB cable (top right). Also, at the top right corner, a reset button allows you to

restart the board if needed—without the need to unplug and then plug to power again.

The remaining of the pins include methods for interfacing with external circuits. These include

standard connections to the Ground (0 Volt), as well as to 3.3 Volt and 5.0 Volt. Several pins

can be used for analog input31, and the remaining for digital input or output32.

Last, note that most boards also include a built-in LED light—in the above diagram fixed to

pin 13. This can be quite handy, for instance for running simple programs or testing the health

of the board, without requiring any external circuitry. This pin is used in the next subsection

for demonstrating the simplest possible program on Arduino.

3.2.3 Hello (Blinking) World!

Traditionally, the first program when learning a new programming language or platform is the

“Hello World”, aiming to produce the simplest possible program, i.e., printing “Hello World”

message to the standard output of the computer.

In the Arduino world, the role of this is taken by the “Blink” program, a simple listing of code

where the built-in LED (at pin 13) alternates between ON and OFF every one second.

The “Blink”—and many popular, educational and useful programs—are available in the

Arduino IDE. You can easily load any of them from the File menu, as shown in Figure 3-4.

Once loaded—or edited—the code can be deployed onto the board by pressing the Upload

button—the one with the arrow pointing right in the Action buttons tab, shown in Figure 3-2.

30 https://en.wikipedia.org/wiki/ATmega328
31 The analog input pins allow to read values in a range of voltage, typically from 0 to 5 Volt. This can be used for
example with a potentiometer to read a range of values.
32 Unlike analog input, digital pins can be used to read (sense) or write (power) the pin to either of two values
corresponding to 0 and 1 (or false and true). These are usually the values 0 Volt and 5 Volt respectively. Most
digital pins can be used for either input or output, but their use must be determined programmatically.

https://en.wikipedia.org/wiki/ATmega328

P a g e | 59

Figure 3-4: Opening Arduino IDE's built-in examples (in this case, "Blink")

P a g e | 60

The code of the Blink program is shown in Listing 20.

/*

 Blink: Turns an LED on for one second, then off for one second,

repeatedly.

 Most Arduinos have an on-board LED you can control. On the UNO, MEGA and

ZERO it is attached to digital pin 13, on MKR1000 on pin 6. LED_BUILTIN is

set to the correct LED pin independent of which board is used.

If you want to know what pin the on-board LED is connected to on your

Arduino model, check the Technical Specs of your board at:

https://www.arduino.cc/en/Main/Products

modified 8 May 2014 by Scott Fitzgerald

modified 2 Sep 2016 by Arturo Guadalupi

modified 8 Sep 2016 by Colby Newman

This example code is in the public domain.

http://www.arduino.cc/en/Tutorial/Blink

*/

// the setup function runs once when you press reset or power the board

void setup() {

 // initialize digital pin LED_BUILTIN as an output.

 pinMode(LED_BUILTIN, OUTPUT);

}

// the loop function runs over and over again forever

void loop() {

 digitalWrite(LED_BUILTIN, HIGH); // turn LED on (HIGH voltage level)

 delay(1000); // wait for a second

 digitalWrite(LED_BUILTIN, LOW); // turn LED off by making voltage LOW

 delay(1000); // wait for a second

}

Listing 20: The Blink code

The code shows the basic structure of any Arduino program. The main point is that it defines

two special functions as follows:

• Setup: This function runs once, at launch—i.e. when the board is first powered up or

reset. It is usually used to initialize variables, set up connections, and configure the IO

pins—e.g. in this example it sets pin 13 (LED_BUILTIN) as OUTPUT.

P a g e | 61

• Loop: This function is run repeatedly. It is used to realize the logic of your program.

Typically, this includes reading values, processing them, possibly sending them over a

network connection, using them to make decisions locally, and finally to control the

connected actuators. In this simple example the loop repeatedly turns on the LED at

pin 13, waits for 1000 milliseconds—i.e. 1 second—and then turns it off and wait for

1 more second, etc.

Running the code causes the built-in LED connected to pin 13 to turn on for 1 second, then

go off for 1 second, then back on for 1 second, etc. A view of an Arduino UNO-compatible

board is shown in Figure 3-5—at the moment the yellow, built-in LED at port 13 is turned on.

Figure 3-5: Arduino UNO-compatible board with the built-in LED turned on

3.2.4 Monitoring code execution and debugging

While the Blink is a trivial program, you can quickly get to a point which requires more careful

coding as well as the ability to monitor the code execution and possibly debug it. As Arduino

boards rarely have a standard display themselves, it is very useful to learn how to use the

built-in Serial Monitor which enables the board to print some information directly in a console

on your computer—with which the board is connected via a USB connection.

P a g e | 62

You can launch this console by selecting Tools from the menu, then Serial Monitor, as

illustrated in Figure 3-6.

Figure 3-6: Launching the Serial Monitor, a console assisting the developers into monitoring and
debugging their code

Inside this console, you can print messages directly, using the Serial.write() function.

For example, the following statement prints the “Hello World!” message and moves the

cursor to the next line—using the ‘\n’ special character.

Serial.begin(9600);

Note that during setup, you need to initialize the Serial Monitor using the following statement

(where 9600 is the rate with which the Arduino communicates with the connected computer):

Serial.write("Hello World!\n");

To demonstrate this functionality, edit the original Blink code to print messages on setup and

then in each change of state in the LED. The resulting code is illustrated in Listing 21.

P a g e | 63

// the setup function runs once when you press reset or power the board

void setup() {

 // initialize digital pin LED_BUILTIN as an output.

 pinMode(LED_BUILTIN, OUTPUT);

 Serial.begin(9600);

 Serial.write("Hello World!\n");

}

// the loop function runs over and over again forever

void loop() {

 digitalWrite(LED_BUILTIN, HIGH); // turn LED on (HIGH is the voltage)

 Serial.write("ON\n");

 delay(1000); // wait for a second

 digitalWrite(LED_BUILTIN, LOW); // turn LED off by making voltage LOW

 Serial.write("OFF\n");

 delay(1000); // wait for a second

}

Listing 21: The edited Blink code to also print debugging info in the Serial Monitor

And when launched, the code produces output on the Serial Monitor as shown in Figure 3-6.

Listing 22: The Serial Monitor showing messages printed by the setup and loop functions

P a g e | 64

3.3 Examples

3.3.1 Simple traffic lights system

A slightly more advanced—but still simple—example would be a traffic lights system. This

uses 3 LED lights—red, yellow and green—and simulates the succession of lights, i.e. red, then

red and yellow, then green, then yellow, and back to red33, as shown in Figure 3-7.

Figure 3-7: The four main states for a simple traffic lights system

Each of the three lights will be connected to one of the digital outputs, say green to 2, yellow

to 3 and red to 4. For clarity, we define these as constants, as shown in the code listing.

Typically, states S1 (red) and S3 (green) stay on for a longer period, while transit states S2 and

S4 are only activated for a shorter period. For simplicity, we use the same period for transits

between any of the states, e.g., 1000 milliseconds.

3.3.1.1 Components, Connections and Code

Obviously, to implement this project we need an Arduino board, a breadboard, 3 LED lights

(red, yellow, green), some resistors (e.g. 220 Ohm) to use with the LED lights34, and some

wires to form the circuit. The circuit is formed to realize the simple traffic lights is shown in

Figure 3-8.

33 While this is a typical pattern in many countries, there are places where the sequence is different. See
https://en.wikipedia.org/wiki/Traffic_light.
34 For LED lights, it is recommended that you connect them to Arduino with an inline resistor, otherwise the LED
might draw too much current and damage itself and the board.

https://en.wikipedia.org/wiki/Traffic_light

P a g e | 65

Figure 3-8: The circuit forming the simple traffic lights (designed using fritzing version 0.8.7)

The circuit is rather simple: Each of the 3 coloured LED lights is connected in line with a 220

Ohm resistor. Their anodes (longer pin) are connected to the corresponding ports on the

board (i.e. port 2 for green, 3 for yellow and 4 for red). Their cathodes are connected via the

resistor to the ground (GND port).

The source code is listed in Listing 23 and is described here:

• Each of the three ports is defined as a constant, integer value with the matching name.

• The state is defined as an integer value to describe the state in which the traffic lights

system is in (as per the four states shown in Figure 3-7).

• The setup function initializes each of the three ports to the OUTPUT mode.

• The loop simply increases the state by one (initially it’s zero) and then it uses that value

to decide which state to activate, using a condition structure with multiple if and if-

else statements. Each of the four states is activated with a corresponding function.

• When the state is 4, it resets to 0 (see state diagram in Figure 3-7).

• The last statement simply pauses the loop for 1000 milliseconds.

P a g e | 66

const int GREEN = 2;

const int YELLOW = 3;

const int RED = 4;

int state = 0;

void setup() {

 pinMode(RED, OUTPUT);

 pinMode(YELLOW, OUTPUT);

 pinMode(GREEN, OUTPUT);

}

void loop() {

 state++; // move to next state

 if (state == 1) {

 state1();

 } else if (state == 2) {

 state2();

 } else if (state == 3) {

 state3();

 } else { // assume state is 4

 state4();

 state = 0; // reset state

 }

 delay(1000);

}

void state1() {

 digitalWrite(RED, HIGH);

 digitalWrite(YELLOW, LOW);

 digitalWrite(GREEN, LOW);

}

void state2() {

 digitalWrite(RED, HIGH);

 digitalWrite(YELLOW, HIGH);

 digitalWrite(GREEN, LOW);

}

void state3() {

 digitalWrite(RED, LOW);

 digitalWrite(YELLOW, LOW);

 digitalWrite(GREEN, HIGH);

}

void state4() {

 digitalWrite(RED, LOW);

 digitalWrite(YELLOW, HIGH);

 digitalWrite(GREEN, LOW);

}

Listing 23: The code for the simple traffic lights

P a g e | 67

This code can be compiled and uploaded to the board, using the corresponding buttons in the

“Action buttons” panel—see Figure 3-2.

Once uploaded, the code starts running, and the lights turn on and off as per the state

diagram. A view of an actual such system is shown in Figure 3-9.

Figure 3-9:View of the simple traffic lights circuit

3.3.2 Adaptive traffic lights system

While the traffic lights system described in section 3.3.1 provides a view of forming a circuit,

interfacing it with Arduino, then manipulating it with code, it does not demonstrate how you

can read input values from external sensors. In this section, we extend the previous example

with a method where the delay (time between states) can be adapted using a hardware

component (a potentiometer).

3.3.2.1 Components, Connections and Code

As this example builds on the previous one, it only needs a few additional components: A

potentiometer and some wires to connect it to the board.

A potentiometer is an analogue component, essentially a variable resistor. By connecting its

endpoints to the min (ground) and max (5V) endpoints, we can use one of the analogues input

pins of the board to receive input from the user. Specifically, the potentiometer is connected

to GND and 5V, as well as to analogue input port 0, as shown in Figure 3-10.

P a g e | 68

Figure 3-10: The circuit forming the adaptive traffic lights system with a potentiometer to control the
delay (designed using fritzing version 0.8.7)

Note that the analogue input ports are used to read voltage. The input range is from 0 (GND)

up to a max of 5V. From within the code, this value is accessed using the analogRead

function, which itself returns an int in the range 0 to 1023 (where 0 corresponds to 0V and

1023 to the max value of 5V).

P a g e | 69

const int RED = 4;

const int YELLOW = 3;

const int GREEN = 2;

const int POT_IN = 0; // port for analogue input

int state = 0;

void setup() {

 pinMode(RED, OUTPUT);

 pinMode(YELLOW, OUTPUT);

 pinMode(GREEN, OUTPUT);

}

void loop() {

 state++;

 if (state == 1) {

 state1();

 } else if (state == 2) {

 state2();

 } else if (state == 3) {

 state3();

 } else { // assume state is 4

 state4();

 state = 0; // reset state

 }

 int val = analogRead(POT_IN); // 0 to 1023

 delay(100 + val*4);

}

// the code for the state1-4 functions is the same and omitted for brevity

Figure 3-11: The code for the adaptive traffic lights

The main changes in the code are as follows:

• The POT_IN constant is defined for marking that the potentiometer is connected to

analogue input port 0.

• In each loop, the value of the potentiometer is read (in the variable val), and that

value, which is in the range of 0..1023, is used to decide the delay. At a minimum, the

delay is 100 milliseconds (i.e., 0.1 seconds), and at max it is 4192 milliseconds (i.e.

4.192 seconds).

When implemented, the adaptive traffic lights work as before—based on the state transitions

shown in Figure 3-7–but the delay between each state is controlled via the potentiometer.

The completed circuit is shown in Figure 3-12.

P a g e | 70

Figure 3-12: View of the adaptive traffic lights circuit

3.4 Additional Resources

Because of its advantages—inexpensive, cross-platform, simple, open-source—Arduino is

widely popular with many online resources, including tutorials and sample projects. You can

find more about Arduino online35.

3.4.1 Arduino simulator

While Arduino boards and accompanying electronic components are relatively inexpensive

and easy to use, it often makes sense to first prototype systems using a software-based

simulator. Additionally, it is often faster to use a simulator to form a circuit and test it with

some code, compared to using real, hardware components.

One such simulator is the TinkerCad tool, which was introduced in 2011 for 3D modelling, but

has since been extended to allow further functionality, notably Circuits simulation.

AutoDesk’s TinkerCad is a web-based tool36. To access it, it requires that you sign-up for a free

account. From its dashboard, you need to select the “Circuits” option. While TinkerCad

35 https://www.arduino.cc/en/Guide/Introduction
36 https://www.tinkercad.com

https://www.arduino.cc/en/Guide/Introduction
https://www.tinkercad.com/dashboard?type=circuit

P a g e | 71

provides a plethora of basic electronic components, it also features Arduino UNO boards,

along with the ability to define their code.

A view of the editor, implementing the adaptive traffic lights system example of section 3.3.2,

is illustrated in Figure 3-13.

Figure 3-13: TinkerCad implementation of the adaptive traffic lights system

3.4.2 Online tutorials and examples

If you want to learn more about the Arduino IDE (Integrated Development Environment), you

can refer to the online reference guide37, which can also be accessed offline: From the menu,

select “Help”, then “Environment”.

Arduino also offers a convenient language reference covering the functions, values and

structures of the C language variation used in Arduino. This reference is available online38, but

can also be accessed offline: From the menu, select “Help”, then “Reference”.

Finally, perhaps the best way to further advance your knowledge and skills is by reading and

recreating the built-in Arduino examples39.

37 https://www.arduino.cc/en/Guide/Environment
38 https://www.arduino.cc/reference/en/
39 https://www.arduino.cc/en/Tutorial/BuiltInExamples

https://www.arduino.cc/en/Guide/Environment
https://www.arduino.cc/reference/en/
https://www.arduino.cc/en/Tutorial/BuiltInExamples

P a g e | 72

4 IoT architecture and

components (1 of 2)

Author(s): Marios Raspopoulos

 Stelios Ioannou

This Photo by Unknown Author is licensed under CC BY-NC-ND

https://www.sktinsight.com/77384
https://creativecommons.org/licenses/by-nc-nd/3.0/

P a g e | 73

4.1 Introduction

Internet of Things has become a very popular topic of research and Innovation mainly due to

the ubiquitous transformation of computing. Physical devices have become “smart” being

able to sense, communicate in a pervasive way and interact with their environment offering

useful applications and solutions to the humankind. Today they find applications in wide

range of activities like Health, Transportation, Agriculture, Home and Industrial Automation,

Retail and many more. The 2005 ITU Internet Report [4] adds a 3rd dimension to the legacy

“ANY PLACE” and “ANY TIME” communication; the “ANY THING” communication as shown in

Figure 4-1. This has changed the way we perceived the word “telecommunication” to

communication between everything rather than communication between people only. This

meant that there would be expected an exponential growth of network connections which

should be facilitated by powerful networks. A study by Cisco in 2011 [5] predicted that there

will be 25 billion devices connected to the Internet by 2015 and 50 billion by 2020.

Figure 4-1: The new Dimension introduced in the IoT [4]

To ensure connectivity and interoperability it important that there should exist a reference

IoT architecture upon which all IoT applications would be based upon. Nevertheless, there is

not a consensus on a single IoT architecture, globally agreed. Literature mainly reports two

architectural models for IoT; (1) a 3-layer architecture and (2) a 5-layer [6] [7] architecture

but also some specific purpose architectures. In Parallel with the research efforts reported in

literature the International Telecommunications Union (ITU) has started in 2012 [8] an effort

to standardize the functional architecture model for IoT.

P a g e | 74

In this chapter the most important architecture models reported in literature and the ITU-T

IoT Reference model are overviewed and the most important hardware and software

components are identified.

4.2 Characteristics and Requirements of the IoT

4.2.1 Useful Definitions

Before describing the architecture, requirements and models it is important to establish good

understanding about some IoT-related definitions

• Device: In the IoT context, this is a piece of equipment must be able to communicate

and could optionally sense, act, capture data, store data or process data. Its only

mandatory capability is the communication.

• Thing: An object inside the IoT system which is capable of being identified and

integrated into communication system.

• Physical Thing: An object of the physical world which is able of being sensed, actuated

and connected is known as a physical thing (e.g. industrial robots, electrical equipment

etc.)

• Virtual Thing: An object in the information world capable of being stored, processed

and accessed is known as virtual thing. For example, multimedia content, application

software etc.

• Internet of Things: A global information infrastructure which enables advanced

services by interconnecting Things (Physical and/or virtual) based on existing and/or

evolving interoperable technologies. The IoT includes functions for identification, data

capture, processing, and communication to offer different kinds of applications whilst

ensuring security and privacy.

4.2.2 ITU-T Technical Overview of the IoT

Figure 4-2 shows the technical overview of the IoT. A physical thing can be mapped (or

represented) by one or more virtual things in the Information domain. Information is being

collected by physical devices (or things) in the physical world and is Communication Networks

and the Information domain for further processing. Devices may communication with each

other either via the communication network (with or without a gateway) or directly without

P a g e | 75

using the communication network or combinations of these communication links. Exchange

of information not only happens between physical things in the Physical world but also

between virtual things in the Information World.

The communication networks provide capabilities for reliable and efficient data transfer. The

network infrastructure may be implemented or realized via existing networking technologies

(e.g., TCP-IP networks) or evolving networks following the current telecommunication trends.

Figure 4-2: Technical Overview of the IoT

4.2.3 Types of Devices

The ITU-T has identified [8] three types of devices in an IoT System and defined their

relationships with physical things (see Figure 4-3). As previously mentioned, the minimum

requirement for a device in an IoT system is to be able to communicate. Having this in mind,

devices are categorized in three main categories:

1. Data-Carrying Device: A device which is directly attached to a physical thing to

indirectly connect it the communication network.

2. Data-Capturing Device: A device with reading/writing functionalities capable of

interacting with the physical things either directly via data carriers attached to the

physical thing or indirectly via a data-carrying device. In the latter case, the data-

P a g e | 76

capturing device reads the data on a data-carrying device and optionally can write

data from the communication network on the data-carrying device. Communication

between data-capturing and data-carrying devices can be achieved using Radio

Frequency (RF), Infrared (IR), optical and galvanic driving.

3. Sensing and Actuating Device: A device capable of detecting and measuring data

within its environment and digitize it. Inversely, it can convert electronic signals from

the communication network into actions/operations. Typically, this kind of devices

communicate with each other either wirelessly or through wires on a local network

and use gateways to connect between different networks.

Generally, a general device has embedded processing and communication capabilities (wired

or wireless) and may included equipment or appliances depending on the application domain

they are used in (e.g. industrial machines, home electrical appliances, smart phones etc.)

Figure 4-3: Types of Devices and their relationship with Physical Things [8]

4.2.4 Fundamental Characteristics of the IoT

The ITU-T has identified in [8] the fundamental characteristics of IoT systems:

• Interconnectivity: Any IoT device can be interconnected with the global Information

and Communication Infrastructure.

• Things-related services: The IoT provisions services which concern the connected

“things” within their constrains such as privacy protections and semantic consistency

between physical things and their associated virtual things. To provide these thing-

related services within the constraints of things requires that both the underlying

technologies and the physical and information world change.

Communication Network

Sensing/Actuating
Device

General Device
Data Capturing

Device

Physical
Thing

Physical
Thing

Physical
Thing

Data
Carrier

Data
Carrying
Device

P a g e | 77

• Heterogeneity: Heterogeneous IoT devices with different hardware and networking

characteristics get connected and interact with other devices or platforms on various

types networks.

• Dynamic Changes: While roaming and interacting in an IoT system, devices change

their state dynamically. For example, sleeping and waking up, get connected or

disconnected while changing their location and speed. Additionally and equally

important the number of connected devices changes dynamically.

• Enormous scale: Usually the number of devices that need to be managed and that of

the devices that communicate with each other is significantly larger than the ones that

connected to the Internet. This practically means that the communication initialized

by devices is much higher than the one that is initialized by humans. Even more

important is the management and the analysis of the data generated. This relates to

semantics of data, as well as efficient data handling.

4.2.5 IoT Requirements

Based on the above characteristics the ITU-T has defined in [8] a set of high-level IoT System

Requirements for the development of an IoT Reference Model:

• Identification-based connectivity: There needs to be a support for the “Things” to be

connected to the IoT based on their identifiers. This includes a unified processing of

identifiers which might be heterogeneous.

• Interoperability: Interoperability between heterogeneous and distributed systems

needs to be ensured so that a variety of information and services is supported.

• Automatic Networking: The IoT network infrastructure should provide control

functions for automatic networking including self-management, self-configuration,

self-healing, self-optimization and self-protection, to be able to support and facilitate

adaptation in different application domains, different communication environments

and larger number and types of devices.

• Autonomic services provisioning: Services need to be provided by automatically

capturing, communicating and processing of the data of the “Things” according to the

rules configured by the operators and/or configured by the subscribers. This

P a g e | 78

autonomic service provisioning needs to base on data fusion and data mining

techniques.

• Location-based capabilities: Localization is a key enabling technology in IoT as

location-based services must be supported. Things should be able to track their

position to facilitate the provision of services which depend on their location.

Location-based communication and services may be constrained by Regulations and

Laws and should comply with security requirements.

• Security: The ability of any Thing to connect at any time and any place generates

significant security threats against CIA (Confidentiality, Integrity and Authenticity) for

both data and services. Therefore, there is an important requirement to integrate

different security policy and measures related to the things and their communication

in an IoT framework.

• Privacy protection: Data acquired by “Things” may contain private information of their

owners and/or their users. Therefore, it is important that privacy protection is

supported during transmission, aggregation, storage, mining and processing of this

data while not setting a barrier to data source authentication.

• High quality and highly secure human body related services: Services which are based

on the capturing, communicating, and processing of data related to human behaviour

(e.g. exercise, health, location etc.) automatically or through human intervention

should be offered while guaranteeing high quality, accuracy and security.

• Plug and Play: It is important for IoT systems to support plug and play capability in

order to enable or facilitate on-the-fly generation, composition and acquisition of

semantic-based configurations to seamlessly integrate an internetwork of things with

the respective applications and efficiently respond to these applications’

requirements.

• Manageability: Applications in an IoT systems usually need to work automatically

without the intervention or participation of people and therefore the whole operation

process needs to be manageable by the relevant entities in order to ensure normal

network operations.

In addition to all the above scalability is also an important IoT requirement. Any IoT

architecture should be highly scalable and be able to support a very large and progressively

P a g e | 79

increasing number of devices that are constantly sending, receiving, and acting on data. This

kind of architectures usually come with an equally high price – both in hardware, software,

and in complexity. So, it is important for any architecture to support scaling from a small

deployment to a very large number of devices or vice-versa. Additionally, elastic scalability

and the ability to deploy in a cloud infrastructure are essential.

4.3 IoT Architectures

4.3.1 3-Layer Architecture

The 3-layer IoT Architecture [6] [9] [10] [11]shown in Figure 4-4 is the most basic IoT

architecture. It was introduced for the first time in 2009 [9] at the early stage of the IoT

Research.

Figure 4-4: 3-Layer IoT Architecture

The three layers of this architecture are:

• Perception Layer: Provides the mechanisms (sensors) through which the Things

perceive their environment. This is analogous to the nerve endings of a human being

like the eyes, ears, nose, skin, etc. It includes sensing devices that measure different

parameters or conditions in their surrounding environment (e.g. thermometers,

humidity sensors, inertial sensors etc.). In addition to its sensing capabilities this layer

includes functions so that other smart objects in the environment are found and

identified (e.g. RFID). In summary its main functions are to recognize things and collect

information.

P a g e | 80

• Network Layer: This layer is responsible for the connectivity of Things to other Things,

to network devices (e.g. routers, access points etc.), to servers and to the Internet. In

this context it includes functions to connect, associate, authenticate to the attached

node, transmit the collected information, and/or receive actions to be performed by

the Thing from the attached network. Network Layer is implemented using the current

but also the evolving network and mobile technologies (e.g. IEEE802.11 standards, 4G,

5G, Zigbee, Bluetooth etc.) but also different types of networking and data collection

protocols (e.g. TCP/IP, MQTT, etc). Besides connectivity and network operations, this

layer includes information operations to store and process (or analyse) the massive

collected information. Finally, it includes management operation for the seamless and

flawless operation of the integrated IoT system.

• Application Layer: This layer is responsible for the delivery of the application services

to the users/subscribers. It is responsible of utilizing the collected context from the

layers below to deliver intelligent applications to the end users (e.g. smart-home, e-

health, smart-transport etc.). It is the final goal of the IoT system which consolidates

the input from the underlying technologies to offer useful and user-friendly

applications to the users. It therefore mostly includes intelligent software

development functions. It can be seen as the means to converge between the social

IoT needs and the industrial technology in such a way as to have a broad impact on

the global or local economic or social development.

The 3-layer architecture is simple and defines the main idea about IoT but it is not

sufficient for research and innovation purposes as research focuses on finer and more

detailed aspects of IoT. For this reason, literature reports many multi-layer (more than 3)

architectures depending on the IoT application domain. On of them is the 5-layer

architecture.

4.3.2 5-layer Architecture

In the 5-layer architecture [12] [6] [10], the Perception and the Application Layers are the

same as in the 3-layer one while the Network Layer is renamed to Transport Layer (see section

4.3.1) but 2 new layers are added:, the processing layer and the business layer.

P a g e | 81

Figure 4-5: 5-layer IoT Architecture

• Business Layer: It is responsible for the management of the whole IoT system,

including the business and profit models, the charging, and the privacy of the users.

This layer is also concerned with the research and development in the IoT domain.

• Processing Layer: Also known as the middleware layer, the processing layer is

responsible for the storage and the analysis of the data collected at the perception

layer and communicated over the transport layer. It includes databases, cloud storage

and computing capabilities, data analysis modules etc.

4.3.3 Cloud and Fog-Based Architectures

In the two architectures discussed above (3-layer and 5-layer) the discussion was

mostly focused on the technologies rather than on the way the data is being collected or

processed. Depending on where the processing done, IoT architectures can be classified as

either cloud-based or Fob-based [10].

In cloud-based architectures, [13] processing is done centrally at cloud computing

servers. This is a cloud-centric approach where all the applications are built around using the

communication network to convey the data back and forth. This kind of approach offers the

benefits of flexibility and scalability. IoT development can be done using storage tools, data

P a g e | 82

mining and machine learning tools, visualization tools and others that are available on the

cloud. A conceptual IoT framework with cloud computing at the centre is shown in Figure 4-6.

Figure 4-6: Conceptual IoT framework with Cloud Computing at the Centre [13]

In fog-based architectures [14] [15] [16] the sensors as well as the network gateways do part

of the processing and the analysis of the data. In fog computing approaches the capabilities

of the cloud computing are extended to the edge of the network which due to the localization

of the data the latency is significantly reduced allowing the fast delivery of real-time data and

the provision of low-latency and delay-sensitive applications (e.g. real time streaming, e-

health applications etc.). As some pre-processing is done at the sensors or the smart gateways

before reaching the central cloud there might be interoperability and transcoding problems

to solve. This Fog and Smart Gateway-based communication is shown in Figure 4-7. The

Gateway in this approach has an enhanced role linking the IoT with the Fogs and the Cloud. A

layered architecture of this Smart gateway is shown in Figure 4-8.

P a g e | 83

Figure 4-7: Smart Gateway with Fog Computing/Smart Network [16]

Figure 4-8: Layered Architecture of Smart Gateway in a Fog-based IoT

The Physical Layer includes all the physical and virtual Things as well as the physical

and virtual networks that interconnect them. The Monitoring Layer is responsible for the

monitoring of the activities of the nodes and networks in the physical layer. This includes an

orchestration and management of activities like which nodes is performing tasks, what kind

of task, at what time, what is their required output and input etc. It also includes power

monitoring, resource monitoring, response monitoring and service monitoring. The Pre-

processing layer is responsible of the tasks related to data management such as analysis of

the collected data, data filtering, reconstruction and trimming in order to generate more

Physical and Visualization Layer

Monitoring Layer

Preprocessing Layer

Temporary Storage Layer

Security Layer

Transport Layer

P a g e | 84

meaningful and useful data for further processing (typical example is the analysis of inertial

data from accelerometers, magnetometers and gyroscope in order to extract navigation

information like direction of movement, speed, orientation, acceleration etc. The role of the

Temporary Storage Layer is to temporarily store the data generated by the Pre-Processing

Layer on the Fog resources. This data is kept on the Fogs only until is uploaded on the cloud

and then it is deleted. Since there might be generation of private and sensitive data at the

underlying layers (e.g. in healthcare, location, military IoTs) there should be functionality to

provision security. This is the role of the security layer which includes encryption/decryption,

privacy, authentication and integrity measures. Finally, the Transport Layer is responsible for

the uploading of the pre-processed and secured data to the cloud.

4.3.4 Social IoT

The Social IoT (SIoT) paradigm [17] is based on the notion of social relationships amongst

the objects of the IoT systems. This is analogous to the way that people establish social

relationships with one another. This approach has 3 main benefits:

• Navigability: Objects can easily discover other objects and establish connections

between them easily and in a very scalable way.

• Trustworthiness between friendly objects: Object connected to each other in a

friendly relationship can a establish a level of trustworthiness between them.

• Social Networks already in place for humans can be re-used and stented to apply for

IoT related solutions and applications

The SIoT model adopts the human social networking approach but it extends it in order to

become applicable in the IoT world. In this context the most important components of a SIoT

architecture are:

• ID Management (ID): Objects need to be identifiable therefore an ID is assigned to

each object based on typical parameters like MAC address, IPv6 address, the product

code etc.

• Object Profiling (OP): The profile of each object is comprised of information about

that object which allows the organization of objects into classes based on their

features.

P a g e | 85

• Owner Control (OC): the owner defines specific policies regarding the operations that

can be performed by the objects. This includes security and access control policies as

well as the control of the Relationship Management (RM) component.

• Relationship Management (RM): Functionality for the creation, termination and

updating of object relationships based on human-controlled settings and relationship

rules (e.g., what are the conditions for an object to establish a relationship with

another one – for instance a temperature sensor with an air-conditioning unit).

• Service Discovery (SD): To enable objects or services to discover other

objects/services. This is analogous to the human world were people search for friends

to establish relationships with. Service discovery is performed by each object by

querying its social relationship network.

• Service Composition (SC): The objective of this module is to provide better integrated

services to the users based on their preferences and needs. Based on the composition

and usage of the services included in this component the service discovery can

discover the best service for the users. For this reason, this component should include

functions for crowd information processing so that information is gathered from main

objects and the best response to a service query is obtained.

• Trustworthiness Management (TM): Information is collected regarding the behaviour

of objects in order to define their reliability and estimate their trustworthiness.

P a g e | 86

Figure 4-9: Architecture for the SIoT [17]

The architecture of the SIoT paradigm is shown in Figure 4-9. The server side consists of 3

main layers:

• Base Layer: It includes a database that stores information about all the objects

(attributes, metadata, relationships, semantic engines and communications between

them).

• Component Layer: Functionality for interaction between the objects

• Application Layer: to interface and deliver services to the users.

The object side there are again 3 layers:

• Object Layer: Includes all the physical objects than can be discovered and reached

through the communication interfaces:

• Object Abstraction Layer: Common languages and procedures are used to harmonize

the communication between different objects.

• Social Agent and Social Management Layer: The social agent handles the

communication between objects with regards to updating of the profiles and

P a g e | 87

relationships and to discover or request services from the social network. The Service

Manager provides the interface for humans to control the objects’ behaviour.

4.3.5 The ITU-T IoT Reference Model

The ITU-T IoT Model [8] includes 4 Layers as well as Management and Security Capabilities

implemented across all the layers as shown in Figure 4-10.

Figure 4-10: ITU-T IoT Reference model [8]

4.3.5.1 Device Layer

The device layer includes the Devices as well as the Gateway that will provide connectivity to

the Wide Area Network. For this reason, this Layer capabilities can be grouped in two main

categories:

• Device Capabilities: The most important capabilities related to the devices are:

o Direct interaction of the devices with the communication Network without

using the Gateway in order to collect and upload or to receive information

from the communication network.

o Indirect interaction of the devices with the communication Network through

the Gateway in order to collect and upload or to receive information from the

communication network.

P a g e | 88

o Ad-hoc networks capabilities so that device can form ad-hoc networks in

situations where there is increased need for scalability and quick deployment.

o Sleeping and waking up: These mechanisms are provided to save energy.

• Gateway Capabilities: The most important capabilities of the gateway are:

o Multi-Interface Support in order to support communication of devices using

any wired or wireless technology (e.g. Zigbee, Bluetooth, Wi-Fi etc.). At the

network layer the gateway gets connectivity to the Wide Area Network (e.g.

the Internet) using mobile technologies (2G, 3G, LTE, 5G), PSTN, DSL etc.

o Protocol Conversion: To support communication at the device layer when the

connected devices use different communication protocols (e.g. Zigbee devices

connected with Bluetooth devices) and at the network layer when the

connected devices use different technology to connect to the WAN (e.g. DSL

and 5G).

4.3.5.2 Network Layer

Includes two sets of capabilities:

• Networking capabilities to support connectivity to the network such as access and

transport resource control functions, mobility management or authentication,

authorization and accounting

• Transport capabilities to provide connectivity for the transport of the IoT Service and

application-specific data and the related control and management information.

4.3.5.3 Service Support and Application Support Layer

Includes two sets of capabilities:

• Generic Support Capabilities: Common capabilities usable by different IoT

applications (e.g. data processing, data storage).

• Specific Support Capabilities to support the requirements of diversified applications.

In simple words they provide different support functions for different types of IoT

applications. Generic Support Capabilities can be re-used in order to build specific

Support Capabilities.

P a g e | 89

4.3.5.4 Application Layer

Contains IoT Applications.

4.3.5.5 Management Layer

Includes capabilities to support traditional networking management functions such as fault,

configuration, accounting, performance and security (FCAPS) management. The

management capabilities can be grouped in:

• Generic Management capabilities like:

o Device Management (e.g., remote device activation and deactivation,

diagnostics, software and firmware updating, device working status

management etc)

o Local network topology management

o Traffic and congestion management

• Specific Management capabilities which depend on the application requirements

4.3.5.6 Security Layer

It includes two sets of capabilities:

• Generic security capabilities that do not depend on the application used:

o At the Application Layer: authorization, authentication, confidentiality of

application data, data integrity protection, privacy protection, security audit

and anti-virus.

o At the network Layer: authorization, authentication, confidentiality of use data

and signalling data, signalling integrity protection

o At the Device Layer: Authentication, Authorization, device integrity validation,

access control, data confidentiality and integrity protection.

• Specific security Capabilities which depend on the application used (e.g. security of

mobile payments, security of e-health data etc.)

4.4 IoT Devices and Components

An IoT system typically includes a large (and in some cases enormous) number of

heterogenous devices with different capabilities and it becomes challenging how all these

P a g e | 90

devices interoperate. As defined in section 4.2.3 devices are categorized as data-carrying,

data-capturing, sensing and actuating. Data-capturing and data-carrying are responsible for

the reading and/or writing of information from or to the physical things (e.g., temperature

sensors, IR sensors, barcode readers etc.). A general device on the other hand, has embedded

processing and communication capabilities (e.g., a micro-controller) to perform more

sophisticated functions or facilitate the development of stand-alone IoT systems without the

need of connecting to the Wide Area network. Based on this categorization, one can classify

devices based on their processing power and their connectivity capabilities [18].

Regarding the processing capabilities devices are classified as:

• Devices with no processing capability: In the context of IoT these are

considered as passive devices, usually low-cost and with no microcontrollers. A

typical example is an RFID.

• Devices with low processing capabilities: Their processing capabilities are

limited to the reading and writing data from or to sensors and actuators and

sending this data to IoT applications, but they are not able to make decisions or

run complex algorithm. They are typically low cost and usually embed a very

low-power and low-cost microcontroller. Typical example is a smart light or a

door sensor.

• Devices with high procession capabilities: They have enough processing power

to enable them making decisions and running complex algorithms. They are

typically high cost as they employ a powerful microcontroller. (e.g. a smart

cooling system, or a smart thermostat)

Regarding the connectivity capabilities devices can be classified as:

• Devices with low connectivity: This kind of devices do not connect directly to

the communication network to transfer the data but instead they rely on

additional elements (e.g. gateway) to perform communications tasks (e.g.

protocol translation or internet connectivity).

• Devices with High connectivity: They have the hardware and ability to directly

connect to the network to transfer the data.

P a g e | 91

The ITU-T recommendation Y.4460 [18] defines the architecture models devices with

different capabilities. Specifically, it proposes models for devices with:

• Low Processing and Low Connectivity (LPLC)

• Low Processing and High Connectivity (LPHC)

• High Processing and High Connectivity (HPHC)

Based on the architectures presented in section 4.3 the main components of an IoT can

be identified. An ecosystem goes beyond the technology components and includes also the

data and monetary/business aspects that that are important when IoT solutions and systems

are deployed for economic, social, research or other benefit. These are:

• Sensors/Actuators and Embedded Technology

• Connectivity

• Data Management and IoT Analytics

• IoT Cloud

• User Interface

4.4.1 Sensors/Actuators and Embedded Technology

Sensors and actuators are considered the frontend of any IoT application or system.

Sensors facilitate the concept of context awareness so that knowledge about the

environment is collected and uploaded for further processing to the attached communication

network. Actuators on the other hand, receive instructions from the communication network

and perform actions onto the environment they reside.

4.4.1.1 Sensors

A sensor is a device that is used to measure a physical quantity by converting it into a

signal that can be read by the system. In IoT physical quantities from the environment (e.g.

temperature, humidity, inertia etc.) are measured then they are converted into electronic

signals which are then digitized to be sent to the communication network. Sensors typically

include transducers which, by definition can convert on form of energy to another. Based on

the application there are many possible sensors that can be used in an IoT system

(temperature sensors, RFID, light sensors, electromagnetic sensors etc.).

P a g e | 92

Figure 4-11: Typical IoT Sensors

Sensors can be classified, according to one of the following criteria

• Power supply requirements: Passive Sensors or self-generating, directly generate an

electrical signal in response to an external stimulus without the need for an external

power supply (e.g. thermocouple or piezoelectric sensors). Active sensors require

external power supply or an excitation signal for their operation and in this case the

output signal power comes from the power supply (e.g. Infrared or Sonar sensors).

• Nature of the Output signal: Sensors can be either analogue or digital. Analogue

sensors generate signals that are continuous in both their magnitude and temporal or

spatial content (e.g. temperature, displacement, light etc.) Digital sensors are ones

that generate signals that are discrete in time and amplitude (e.g. shaft encoders,

switches etc).

• Operational Mode: Deflection mode sensors generate a response that is a deflection

or a deviation from the initial condition of the instrument and this deflection is

proportional to the measurand of interest (e.g. pressure sensor). A Null mode sensor

This Photo by Unknown Author is licensed under CC BY-SA

https://ocw.cs.pub.ro/courses/iot2015/courses/01
https://creativecommons.org/licenses/by-sa/3.0/

P a g e | 93

exerts an influence on the measured system so as to oppose the effect of the

measurand. The influence and measurand are balanced (typically through feedback)

until they are equal but opposite in value, yielding a null measurement. Null mode

sensors can produce very accurate measurements but are not as fast as deflection

instruments. (e.g. Wheatstone bridge sensors).

• Measurand: Sensors depending on the quantity they measure (e.g. Mechanical,

thermal, magnetic, radiant, chemical etc.)

• Physical Measurement Variable: Depending on whether the sensors rely on the

variation of resistance, capacitance or inductances they can be classified as resistive,

capacitive or inductive.

According to the application as well as accuracy and precision requirements, sensors should

be selected while considering the following aspects:

• Accuracy of the input Readings

• Reliability and Repeatability of input

• The conditions of the environment the sensors will be placed in

• Cost and power consumption

4.4.1.2 Actuators

Actuators are devices that can take an effect on the environment they belong by

converting electrical signals into different actions or in different forms of energy. Examples

include lights, displays, motors, robotic arms, heating/cooling elements etc. Motion-based

actuators are typically categorized into electrical, hydraulic or pneumatic actuators. Electrical

actuators convert the electric signals into some form of rotation (e.g. motor) or motion,

hydraulic ones facilitate mechanical motion using fluids whereas pneumatic actuators use the

pressure of compressed air. In the typical example of a smart home automation system we

can find actuators that lock/unlock doors, switch on/off the lights, heat up to increase the

temperature, etc.

P a g e | 94

Figure 4-12: Industrial IoT Actuators

4.4.1.3 Microcontrollers and Embedded Systems

While a sensor is a device that turns the received physical conditions or states into signals

(analogue or digital) and the actuator is the device that turns the digital signals into some sort

of physical effect, the microprocessor is considered to be the computing systems which sits

in the middle and processes and/or generates the digital signals. A microcontroller has a

central processing unit (CPU), a fixed amount of memory (RAM and ROM) as well as other

input/output ports and peripherals all embedded onto a single chip.

When trying to choose a microcontroller for an IoT application or system, the approach “one-

size-fits-all” approach cannot be adopted. Here is a list of characteristics that need to be

considered when selecting the microcontroller:

• Bits: The number of bits that microcontrollers support varies which affects their

processing speed. Typical sizes are 8-bit, 16-bit, 32-bit and 64-bit.

• Random Access Memory (RAM) is the fast-access memory that does not retain the

data when the device is shut down. This memory is embedded in microcontrollers to

quickly perform various actions. They come in different sizes. High memory size means

better processing capability but also higher cost.

This Photo by Unknown Author is licensed under CC BY-SA

https://geobrava.wordpress.com/2017/03/14/upside-for-industrial-automation-and-robotics-technology/
https://creativecommons.org/licenses/by-sa/3.0/

P a g e | 95

• Flash or the ROM: It is the microcontrollers memory that retains the data when power

is off. It is smaller than the RAM but it is required in order to support offline storage.

• General-Purpose Input Output (GPIO) pins: These are the pins where the sensors and

actuators get connected. Depending on the cost and size of the microcontroller, the

number of pins can vary from a few tens up to hundreds.

• Connectivity: The ability of the microcontroller to establish connections to the

network or the Internet. There are various communication technologies that can be

used (e.g., Wi-Fi, Bluetooth, Zigbee, Ethernet, etc.)

• Power consumption: This is an important characteristic of a microcontroller as it

defines the number of actuators and sensors the microcontroller can support and

power up especially when the microcontroller is powered but from batteries or solar

panels. These days energy efficiency is very important in microcontroller to extent

lifetime of the IoT devices’ batteries.

• Development Tools and Community: Many microcontrollers come with

development/programming tools to support and facilitate easy integration onto IoT

solution. For a few microcontrollers’ families there exist communities and forums that

are of great help for integrators and developers when building up an IoT system.

Some popular IoT Microcontrollers are Arduino, ARM, Raspberry Pi and many others.

P a g e | 96

Figure 4-13: IoT microcontroller

4.4.2 Connectivity

Connectivity is a key ingredient of an IoT System since, as defined by the ITU-T [4], the only

mandatory capability of an IoT Device is communication. Based on this, any device attached

to an IoT platform should be able to send to or receive data from the attached network. There

are various challenges that need to be taken into consideration and dealing with IoT

connectivity [19]:

• Identification and Addressing: That fact that the number of IoT devices attached to a

network could be very high necessitates the availability of efficient mechanisms and

protocols for device identification through unique addresses. Given the running out of

addresses in the IPv4 protocol, IPv6 becomes a necessity in IoT.

• Low Power Communication: IoT devices are typically low power devices with many

power restrictions. Therefore, it needs to be ensured that the communication

technology consumption is kept to the minimum on these devices.

• Efficient Routing protocols with low memory requirements

• High-Speed Communication

This Photo by Unknown Author is licensed under CC BY-NC-ND

http://maxembedded.com/2011/06/mcu-vs-mpu/
https://creativecommons.org/licenses/by-nc-nd/3.0/

P a g e | 97

• Mobility

More information about IoT communication technologies and protocols can be found in

sections 7 and 8

4.4.2.1 Smart Gateway

Data from sensors to the communication network or data from the communication network

to the actuators in many cases have to go through gateways especially in cases where multiple

networks need to be traversed. Gateways are devices that make network protocol

translations to ensure seamless communication between the many (typically heterogeneous)

IoT devices. That said, gateways are an integral part and have central and crucial role in an

IoT system being responsible for the easy management of data traffic. In some cases,

gateways offer security by protecting the system from authorized access and malicious

attaches. Moreover, act as pre-processors for the data collected from the sensors before

forwarding them to the cloud. In this context, there exist “Smart” or “Intelligent” gateways

that analyse the data to either infer new knowledge or compress the data by forward only

the important and relevant information to the cloud.

4.4.2.2 Networks, Mobile Technologies and Protocols

In IoT, connection to the Internet is typically and usually achieved using the Internet

Protocol (IP) despite the fact the IP protocol stack is power- and memory-demanding for the

connected devices. For this reason, it is also possible for devices to connect to the local

network using non-IP technologies like RFID, Bluetooth, NFC, etc. however these technologies

are limited in range. These low-range technologies are used for personal area networking

(PAN) and are quite popular in IoT applications such as wearables. For Local Area Networking

(LAN) IP-compatible technologies should be used however the IP-protocol needs to be

modified to support low power communications. One of these protocols is 6LoWPAN which

incorporates IPv6 with lower power requirements. Other networking technologies that can

be used in IoT include IEEE802.15.4, RFID, LTE, 5G, 802.11 standards, Z-wave etc. More details

about the networking, mobile technologies and the relevant protocols can be found in

chapters 7 and 8.

4.4.3 Data Management and IoT Analytics

P a g e | 98

IoT is highly associated with a colossal number of data that gets communicated

between the IoT components; there is raw sensed data which is being collected by the

sensors, pushed to the gateways for prepossessing and maybe inferring of new data and then

uploading of this data to the cloud for storage or further processing. In the reverse direction

analysed data leads to smart decisions which are forwarded back to the actuators for

execution. This requires a system that is capable of storing, processing and analysing a very

large amount of data; hence data management and data analytics are critical components of

an IoT system.

IoT Analytics is used to make sense of the vast amounts of collected data. For instance,

to infer the walking patterns, or most-visited shops of shopping mall visitors whose position

is anonymously tracked. Another example could be the estimation of the likelihood of a car

accident by monitoring the driving behaviour of cars in a smart transport environment. Once

such situations are identified, an immediate decision needs to be taken by the system and a

specific action needs to be executed or a warning needs to be issued to prevent undesirable

scenarios. In simple words, IoT analytics are concerned with the conversion of the raw sensor-

collected data into useful insights (further knowledge inference) which are analysed to lead

into smart and useful decisions. Data analysis has storage and computation requirements

which in many cases cannot be accommodated in the sensors or even the smart gateways

therefore they need to be provisioned in the cloud.

More information about Data Management and Analytics in chapter 9 and 10.

4.4.4 IoT Cloud

The likely limited processing power and storage capability of sensors and smart gateways

requires that data travels all the way to the core of the network for either storage or

specialized and powerful processing. It can be considered as a smart high-performance entity

which combines the various IoT components together with high data-handing, storage and

decision-making capabilities. Many IoT applications these days have very low latency

requirements in the range of milliseconds (e.g. smart health, smart transport etc.) therefore

the IoT Cloud should be able to process the colossal amount of data from multiple source

extremely fast.

P a g e | 99

In short, the cloud is the brain of the IoT ecosystem and typically responsible for

processing, analysing, decision-making and storing the data. Nevertheless, the cloud is not a

mandatory component of an IoT system since (as described in section 4.3.3) Fog or Computing

allows processing and storage to happen in a distributed way. The Cloud solution is preferred

when massive scalability and decreased operational cost are required whereas the Edge

computing solution is the preferred option when large amount of data processing and storage

are required on-premises.

4.4.5 User Interface

The user interface is the physical and visible part of the IoT system to the user. It provides an

interactive way through which the user can get access to the data, receive alarms, perform

actions, give instructions, set preferences etc. It is of high importance to develop an interface

which is friendly to the user and does not require extra effort to perform these interactions

with the IoT application. The interface could be simply an application implemented on a

smartphone or table or it could be a direct interaction with the “Things” (e.g. in Amazon Alexa

users interact directly with the devices).

P a g e | 100

IoT architecture and components (1 of 2)

5 IoT architecture and

components (2 of 2)

Author(s): Dr. Omar R. Daoud

Dr. Mohammed Bani Younis

Dr. Saleh Saraireh

 Eng. Rasha Gh. Freehat

This Photo by Unknown Author is licensed under CC BY-SA

https://www.electronics-lab.com/iot-needs-embedded-cryptography-for-security/
https://creativecommons.org/licenses/by-sa/3.0/

P a g e | 101

5.1 Cyber-Physical System

5.1.1 Introduction

During everyday life, an interaction with many complex objects and systems is a must during

the rises of these days’ technologies. Cyber-Physical System (CPS) stands for the direct

interaction between the physical world and the computers. The CPS concept was initially

supported by the US National Science Foundation (NSF). It is related to the control process of

monitoring, sensing, or managing different physical environments that consists of several

distributed computing devices. It requires know-how and skills in building algorithms point of

view, modelling physical environments, integration and communications, and systems

actuations, [20]. Various types of CPSs can be found in our world starting from controlling

small instruments into large manufacturing machines or either buildings and cities.

Practically, they are interacting not only through interfaces such as touchscreens but also

through direct performed actions in the physical life. Thus, it is considered as the key

infrastructure for the modern societies, which improves the citizen’s life quality. As an

example for the most civilized CPS is the latest versions of brand cars, where the computer is

considered as a vital element used to control every single action during the movement as well

as throughout parking. Moreover, CPS could be presented through fulfilling other targets such

as in the energy network of a whole country or among countries, warehouses, and factories.

This issue will obviously have a direct impact not only on the citizens’ life quality, but also on

the economy itself. CPS definition is emphasized to be Cyber-Physical Systems of Systems

(CPSoS) in the case of combining several CPSs to fulfil a specific goal under controlling several

devices/ machines or components [21, 22].

CPS is considered as a transforming interface of interactions between users and engineered

systems. Accordingly, it integrates processes such as sensing, controlling and networking into

a physical infrastructure which is based on the internet connection for such interactions [23].

5.1.2 The Rise of CPS

The CPS concept started since early 1980s in Carnegie Mellon University when they connect

a Coke machine to the internet which was able to label its Coke with either “cold” or not.

From that’s date, the powerfulness of using the internet to connect the tools and other

P a g e | 102

devices has inspired and attracted many researcher’s interest. In this occasion the idea of

interconnecting was the seed of developing the concept of the Internet of Things (IoT). By this

concept some scenarios started to make use of the Radio-Frequency Identification (RFID) to

manage the connected objects by computers. This allowed tracing the connected objects by

some kind of wireless readers. The RFID is considered as a small tag with a traceable chip,

which could be traced, controlled or/and managed through internet. The continuous

improvement and advances in the development lead beyond RFID to many new technologies

in the computer industry, which could be marked as intelligent tools. Therefore, everything

in our lives; homes, buildings, and companies; will soon be connected to the internet which

estimated to be more than 26× 109 connected tools by the year of 2020 [22, 24, 25].

Wireless Sensor Networks (WSNs) is these days an increasing prominent. This is due to that a

large number of heterogeneous tools and devices are interconnect through the internet; such

as dozens of computerized devices, or even hundreds of small sensor nodes. This

interconnection includes electrical machines, electronic devices and many other smart

elements. Therefore, the data of the physical world is easily collected, monitored, managed,

and controlled by wireless communication. Therefore WSN receives a great potential in every

application areas either industrial or domestic and medical. This is due to the fact that these

sensing elements permit data collection from the real-world and digital-form handling

process, which can easily be distributed making use of Ad-hoc network distribution [5, 26,

27].

Nowadays, these sensors can be distributed on humans in addition to the impeded sensors in

the carried smart phones and devices. In this context Bosch Sensory Swarms and the

Qualcomm Swarm Lab at UC Berkeley estimated that up to 1000 wireless sensors per person

will be deployed over the next 10 to 15 years. This has the consequence that huge data is

available for processing, and at the same time a wide range of applications could be deployed

and covered such as robotics, mobile computing and IoT. This will result in a monitored,

controlled and adaptable environments [22].

As mentioned earlier, the CPS concerns on the control process of monitoring, sensing, or

managing different physical environments. This is why improvement of human personal

health can be considered as a good CPS example. In this regards integration through the

P a g e | 103

human vital signs could be monitored and managed to not only to suggest the best places and

routes for use but also to make an interoperable personalized medical devices or robotic

surgeries. Also, it can be used in transportation, either from cruising control point of view or

the securely communications with other smart elements on the roads. This has the ability to

reduce the road delays besides inspect the danger and disaster zones and many other crucial

issues. Another example for the CPS is the sustainability in many issues such as detecting and

deterring fires, combatting the oil spills underwater and many others. Thus, the used sensors,

actuators or any other capabilities will be integrated in order to attain the desired results and

targets [20] [28].

In CPS, the research is divided into different stages based on the components themselves and

the way of linking these parts such as sensors and actuators, the way of communications

controlling and networking, and the needed mathematics and software. The research in CPS

is divided either to represent the cyber formalism or to cover physical processes; i.e.

highlights a specific representation for each of them but not both. As an example, the physical

processes will be modelled based on the differential equations while the control flows will be

represented by standards frameworks or formal methods such as Petri nets or Automata [23]

[29]. This approach will help in modelling and supporting the component-based CPS

development; however, the overall system’s design verification is very complicated to attain.

Therefore, the research needs in CPS could be summarized as follows [23]:

• Abstraction and Architectures: Both of abstraction and architectures should has

innovative approaches to offer:

o A controlling process with a unified integration.

o A rapid design for communication.

o An accurate deployment for computation.

Thus, standards for designing and developing the CPSs are urgently needed in order

to support the integration between cyber and physical issues.

• Distributed Computation and Networked Control: Several challenges appear when

taking the design of a networked control into account such as the failure issues, the

processing time delay, the distribution schemes and the reconfigurations. This will

open the chance for research in order to design both of real-time protocols for quality

P a g e | 104

of service (QoS), and a real-time implementation from the control point of view.

Accordingly, frameworks, algorithms, and tools are needed to fulfil both of reliability

requirements and the security visions.

• Verification and Validation: Due to the fact that the CPS infrastructure lacks of

trustworthiness, its components and structure must be developed and deployed

beyond the existing technologies and be fully integrated in terms of:

o Dependability,

o Configurability,

o Certification.

Therefore, all of the CPS parts such as hardware, software, middleware and the

operating systems must be developed to have new models, algorithms, and tools are

needed to incorporate verification and validation at the control design stage.

5.1.3 Smart Home Systems as a CPS Case study

Smart home system is a very good example for the CPS, because it gathers different

components (home appliances) each of which has its own functionality in a one centric

system. Some issues should be taken into consideration in this case as expressed below [30]:

• These components were prototyped using embedded boards,

• Some of them is equipped with a touch screen,

• Some of them have a programmed user interface,

• Smart components (devices) are programmed based on the device profile for web

services (DPWS) stack; i.e. they have the smartness behaviour or device operations.

This is in addition to the main challenge that could face the CPS developers and designers

namely the huge differences in design practices; because the CPS is an integrated system

which contains different disciplines. Therefore, the designers, engineers, and developers

need to be able to explore the CPS needs in a collaborative manner. This is besides

allocating responsibilities and analysing trade-offs between them. Co-simulation will be one

of the best solutions were different disciplines are coupled. As a result, the cooperation will

be attained without enforcing new tools or methods.

P a g e | 105

Figure 5-1 describes the smart home systems from the environment orientation point of view

where this approach is considered as one of the simplest designing solutions.

Figure 5-1: Smart Home Systems as a CPS Case study [30]

As depicted in, the home system has been designed from the CPS point of view, this means

that the user himself is a part of the system and his behaviour will describe the context-aware

service. Then the sensors are the main parts of this system where any action will be sensed

and causes a reaction from the system. A decision making process will start as a reaction of

the environment changing. These reactions will be drawn a saved context-logic information

stack, which has an individualized data for any system.

Figure 5-2 depicts the context-logic stack that helps in an appropriate decision-making

process. As described in Figure 5-2, the logic stack consists of layers each of which can be

considered as a specific case. This means that according to the preferred data saved in the

stack, it should give/propose the appropriate solution(s) intelligently. Furthermore, if the

collected data is not enough to draw the solution, then the system should go downgrades to

the next layer. Therefore, the lowest layer is the default layer with the factory settings.

Home Environment

Smart Home

System

Action Sense

P a g e | 106

Figure 5-2: Decision Making Process based on Context-Logic Stack [30]

In order to present briefly a case study from different application fields. The following 5.1.3.1

subsection will cover the CPS for range of application domains from the basic level (sensor

level) toward the supply chain through the system levels.

5.1.3.1 Real system and controller both mapped and synchronized in virtual environment

One of the main limiting factors in the design issues is of both the system’s consideration

comprehensive knowledge and the knowledge of technology specifications. This leads to the

need of expertise in both of modelling and simulation studies. As an example, a friendly user

interface is considered as a crucial element in supporting the decision making effectively.

Therefore and to get an intelligent solution, the models and the results of the collected data

must be easily accessed and evaluated to appear in an understandable format. This is why the

manufacturing systems tend to be equipped with huge number of sensors and data

acquisition parts, which will enhance and utilize the communications networks and

technology efficiently. Consequently, Supervisory Control and Data Acquisition (SCADA) is

prevalence in now days’ technologies with same user interface requirements as for the

simulation models interfaces [30], [31].

At the case of being the same user who use the simulation model and operate the SCADA

system, the SCADA interface could be chosen as a basis interface for both of simulation model

P a g e | 107

and the graphical user interface (GUI). Thus, the user interface will mirror the manufacturing

system SCADA. This will result in a simulation model displaying the actual status of the system.

Figure 5-3 depicts the mapping process between the real system and the controllers. This is

in addition to the synchronization process in the virtual environment. In this case, executing

the scenarios and experiments will be at the same parameters as of the real system. Also, the

results will be evaluated using the same performance indicators [32].

SCADA

Real World

Real Factory

Real DB
Automatic Generation of the

Mirrored SCADA GUI

Data Export

Mirrored
SCADA GUI

Sim.
DB

Simulation Model
of the factory

• Database with the
actual status of
the real world.

• Mirror of the MES
GUI for Simulation
control.

• DB and socket
connection with
simulator
software

Virtual World

 Figure 5-3: Real system and controller both mapped and synchronized in virtual environment for
decision support and teaching [32]

The nature of the model building time consuming is another challenge for the simulation

modelling. Thus, besides offering a friendly user interface for the daily usage, the building of

an efficient model with a periodic updates is important as well.

In order to speed up the modelling process, the automated model technique should be used

in the building process. This technique extracted the control codes from the low-level basis

into the database of the model definition, which will be attained using a tailored grammar

interpreter. As shown in Figure 5-3, the database is used to build up the simulation model

P a g e | 108

automatically by providing the inputs for the methods; i.e. the stored data in the low level

controllers.

As a result, an efficiently controlled maintainable simulation is attained by offered friendly

user interface not only in its layout but also in its structure. This will help in achieving the

target of decision support for simulation modelling.

5.2 Basic concepts of IoT

The structure of the network of things (IoT) is a system of related figure gadgets, i.e.

mechanical machines, advanced machines, objects, creatures or people that have been given

Unique Identifiers (UIDs). IoT has also the ability to transfer information in the system without

requiring human-human or human-computer operation. IoT structures nowadays are

becoming part of different aspects of our lives thanks to their applications. These applications

include smart homes, medical services, state control and surveillance, smart city communities

and brilliant transportation structures. With the development of the IoT framework, a huge

system of systems linking these obligatory gadgets (sensors, actuators, machines, etc.), and

with this association, numerous limitations grow, for example, gracefully limited strength and

security that develops with any information. A key advance in building IoT frameworks is the

reasonable choice of equipment sheets, programming stages and the hidden design regarding

the application required. Most IoT applications manage inserted frameworks that were

utilized years prior, yet are changed these days into savvy gadgets with arrange network,

memory utilization, interoperability, and which are inclined to overhauling highlights.

Fundamental ideas in IoT framework will be acquainted with comprehend and look at the

realities and constraints in IoT frameworks, which are: memory outline size (RAM), code size

(ROM/Flash), handling power, power utilization, UIDs and capacity to refresh programming,

accessible force source, bitrate/throughput, cost and size, quickening agents need and

peripherals [33].

5.2.1 Storage and Central Processing Units

When the sensor receives physical conditions from the environment and converts them into

signals, and the actuator converts the signals into physical actions, the microprocessor is the

processing system, which generates these digital signals. Microcontrollers (MCUs) are

specifically designed for embedded applications. In these applications, computing is not the

P a g e | 109

only reason. The MCU has a central processing unit (CPU), a fixed amount of memory (RAM

and ROM), all of which are embedded in the chip. MCU acts as an intermediate device to help

interconnect and control endpoint devices. The microcontroller is regarded as the brain of

the system. When trying to select an MCU for an IoT application or system design, various

characteristics need to be considered; as follows [33], [34]:

• Bits: MCUs have different functions in terms of the number of supported bits, which

will affect their processing speed. Typical sizes are 8 bits, 16 bits, 32 bits and 64 bits.

• Memories: Random Access Memory (RAM) is a high-speed memory that does not

store information when the gadget is not forced to act. MCUs are installed with this

kind of memory to perform various activities quickly. They come in a variety of sizes;

however, increase the size of the memory even though it improves the handling ability

that expense builds. The MCU has composed the information RAM in several registers

(an area in the memory that can compose information or read information) Each

register with a unique location, 8-part RAM register can contain 8 parts (one byte) of

information, RAM space in particular 265 × 8, which means that 256 registers in RAM

contains 8 pieces. Regularly 265 bytes of internal RAM is the most internal RAM for

MCU, however some may be usage-based, for example PIC18F452 microcontroller has

1536 bytes of RAM, MCUs can expand RAM amount if needed by including external

memory chips.

• Flash or ROM: When the power is turned off, it is the microcontroller memory that

retains the data stored in it. It is not as large as RAM, but it is necessary to support

offline storage. Microcontrollers can read ROM, but cannot write or modify it. ROM is

the cheapest program memory. It is recommended to use stable application code.

Therefore, ROM contains special instructions and important content, which will never

change. On the other hand, flash memory has fast erasing and writing cycles in just a

few seconds, so that code development and reprogramming can be performed

quickly. The self-programming Flash in some devices can be completed using a specific

instruction sequence.

• General-Purpose Input Output (GPIO) pins: These are the connection points of

sensors and actuators. The number of pins can vary from dozens to hundreds,

depending on the size and cost of the microcontroller.

P a g e | 110

• Connectivity: The capacity of the microcontroller to build up an association with the

system or the Internet. This should be possible through Wi-Fi, Bluetooth, wired

Ethernet or some other correspondence innovation.

• Power consumption: This is a significant perspective as it will characterize what

number of dynamic sensors and actuators the MCU will have the option to control up

and control particularly when the MCU is powered however from elective sources (for

example sunlight based, players). It is significant IoT gadgets to be vitality effective so

they can perform tasks for quite a while without the need of normally controlling them

up.

• Development Tools and Community: It extremely valuable for MCUs to accompany

advancement instruments and the related documentation to encourage their

reconciliation onto IoT arrangement. Having a network or gatherings taking a shot at

various sorts of microcontroller makes the integrators/designers work a lot simpler in

discovering data identified with their turn of events.

Some popular IoT microcontrollers are Arduino, ARM, Raspberry Pi, Udoo Neo, LightBlue

Bean, TinyDuino, etc, where they run the operating system within the following three main

options:

• Bare Metal: The main advantage, it is the cost-effective and efficient. The main

disadvantage is that it provides less support for the developer of the software.

• Real-Time Operating System (RTOS): An RTOS system provides exact time

operations guarantees. But it has limitation for coordinating physical machinery.

• Linux: Linux main advantage it is much easier to program and connect to the

Internet, but it does not provide any timing guarantees.

5.2.2 Data Movement

Any device attached to an IoT platform should be able to send or receive data from the

attached network. There are various challenges that need to be considered when dealing with

IoT communication [35].

• Identification and Addressing: There is a very large number of IoT devices attached to

the communication network, so efficient mechanisms and protocols must exist for

P a g e | 111

identifying these devices through unique identifiers (UIDs). Given the running out of

addresses in the IPv4 protocol, IPv6 becomes a necessity in IoT.

• Low Power Communication: IoT devices are typically low power devices with many

power restrictions. Therefore, it needs to be ensured that the communication

technology does not consume much of the available power on these devices.

• Efficient Routing protocols with low memory requirements

• High-Speed Communication

The gateway technology has been widely used in IoT systems, a gateway is deployed to

collect, process, and forward the data received from constrained device. The gateway is an

essential component on the network connection of an IoT system. Edge devices such as

sensors communicate with the gateways and also the gateways take the data and

communicate with the cloud. Thus, the gateways act as the bridges between the devices and

the cloud and allow communication over a short distances and limited battery. Compelled

gadgets utilize a fluctuating transmission conventions, (for example, LPWAN, Wi-Fi, Bluetooth

and ZigBee, GPRS and numerous others), gateways interact with these gadgets over a

differing conventions and afterward make an interpretation of information to a standard

convention, (for example, MQTT, HTTP and CoAP). The gateway engineering comprises of

three layers: the detecting layers containing the M2M gadgets, the passage layer offering the

types of assistance of system associations, the application layer offering types of assistance

to clients. The most well-known standard conventions utilized are MQTT, HTTP and CoAP.

Each of these has its advantages and use cases. HTTP gives an appropriate technique to giving

two heading information communicate forward and back among gadgets and focal

frameworks. It gives web perusing through and extraordinary administrations in Internet of

Things gadgets. HTTP is less reasonable if there is a data transfer capacity conditions. MQTT

convention for machine-to-machine and IoT arrangements that goes about as an agent, new

gadgets or administrations can just interface with the intermediary as they need messages.

Whereas MQTT is lighter message size than HTTP, so it is more valuable for executions where

data transfer capacity is a requirement issue. Nevertheless, it does exclude encryption as

standard so this must be considered independently. The Constrained Application Protocol

(CoAP) is another standard convention utilizes with obliged hubs and compelled systems,

created for low-force and low-data transmission frameworks. CoAP is focused on coordinated

P a g e | 112

associations and is not intended for a merchant framework like MQTT, CoAP, it. It is intended

to meet the necessities of REST configuration by furnishing an approach to interface with

HTTP, CoAP effectively interfaces with HTTP for consolidation with the Web while meeting

particular prerequisites, for example, multicast IP support, low overhead, goal locations and

straightforwardness for compelled conditions. Yet it satisfies the needs of low-power gadgets

and situations. CoAP supports the association model (demand/reaction) between application

endpoints, underpins worked in disclosure of administrations and assets, and incorporates

key ideas of the Web, for example, URIs and Internet media types [33], [36], [37].

Every one of these protocols supports taking data or updates from the individual gadget and

sending it over to a focal area. RFID innovation is radio recurrence recognizable proof forward

leap in the inserted correspondence worldview which empowers plan of microchips for

remote information correspondence. RFID the specialized strategy for sensors, a RFID reader

ought to be structured and associated with the microcontroller. Presently obviously different

sides of correspondence are run. The first one is correspondence among microcontrollers,

and the other is correspondence between the administration programming and the

microcontroller. In any case, where there is a more noteworthy open door, there is the means

by which that information is then put away and utilized later on [38], [25].

5.2.3 Input and Output SPI/I2C.

To able to interact with equipment by associate sensors, actuators, and more to make IoT

framework bursting at the seams with movement, sensation, sound, and so on to speak with

other equipment requires sequential protocol like I2C or SPI. These protocols are the basic

language that chip and extra sheets talk. The board knows how to 'talk' with these protocols

and control the associated equipment. Two normal sequential protocols, I2C and SPI will

present:

• Serial Peripheral Interface (SPI) Protocol: It is a bidirectional sequential protocol for

two gadgets to send and get information, utilized in short-separation

correspondence, essentially in installed frameworks. SPI is known as a four-wire

sequential transport, differing with three-, two-, and one-wire sequential transports.

SPI is a duplex coordinated sequential information interchanges interface standard

which work in a full duplex mode, where information can be send and received all

P a g e | 113

the times. That makes SPI picked when quick information transmission is required at

rate 8Mbits or more (eg. Like speedy difference in thermometers), SPI is quicker than

I2C. Gadgets transmit in ace or slave mode where the ace gadget starts the

information outline, various slave gadgets are permitted with singular slave select

lines with the chip select. The SPI transport has just one ace, which is associated with

numerous slaves. SPI can speak with various gadgets through two different ways, the

first is by choosing every gadget with a Chip Select line for this situation a different

Chip Select line is required for every gadget, which is depicted in Figure 5-4. The

second is through multi binding where every gadget is associated with the other

through its information out to the information in line of the following as described

clearly in Figure 5-5 [39], [40].

SCLK
1

MOSI
2

3
MISO

4
SS

SPI Slave

SCLK
1

MOSI
2

3
MISO

4
SS

SPI Slave

SCLK
1

MOSI
2

3
MISO

4
SS

SPI Slave

SCLK

MOSI

5

6

MISO

SS1

SS2

SS3

5

6

7

8

SPI Master

Figure 5-4: SPI Bus Typical Configuration [40]

P a g e | 114

SCLK

MOSI

MISO

b4

5

6

7

8

SPI Master

SCLK
1

MOSI
2

3

MISO

4
a4

SPI Slave

a1
1

MISO
2

3

MOSI

4

SCLK

SPI Slave

SCLK
1

MOSI
2

3

MISO

4
a4

SPI Slave

SS SS

SS

SS

Figure 5-5: SPI Bus Daisy-chain Configuration [40]

o The Pins: Interface and Function:

Coming up next are the SPI transport rationale signals, which has four lines to

associate the master to slave, and their function is as follow:

 Serial Clock (SCLK): The output from the master and gives the planning

of information trade.

 Master Output, Slave Input (MOSI/SIMO): The output from the master

and used to move information from the master to the slave.

 Master Input, Slave Output (MISO/SOMI): The output from the slave

and used to move information from the slave to the master.

 Slave Select (SS): The output from the master which is active low. It is

utilized by the master in order to address and enact a specific slave so

as to begin a correspondence session.

• Inter Integrated Circuit (I2C) Protocol: It is a sequential interchanges protocol utilized

with embedded frameworks and sensors. I2C is bidirectional two-wire simultaneous

sequential transport and require just two wires to communicate data between

gadgets associated with the transport. This protocol is helpful for frameworks that

P a g e | 115

require a wide range of parts cooperating (e.g. low-speed gadgets like

microcontrollers, EEPROMs, A/D and D/A converters sensors, pin, extensions and

drivers). I2C can associate up to 128 gadgets to the main board and keep up a

reasonable correspondence pathway. It utilizes a location framework and a common

transport equivalent to the various gadgets, which can be associated utilizing similar

wires and all information are sent on an individual wire. Be that as it may, I2C is slower

than the SPI; speed of I2C is additionally needy by information speed, wire quality and

outer chaos [39] clearly shown in Figure 5-6.

o The Pins: Interface and Function:

The two lines that structure I2C transport have the accompanying functions:

• Serial Data (SDA): It is used to make the I2C as a half-duplex bus by

exchanging information among the devices.

• Serial Clock (SCL): It used by the master to constrain the transmission rate.

VDD

Rp Rp

Slave 1 Slave 2

Master 1 Master 2

SDA

SCL

Figure 5-6: I2C Bus Configuration [40]

Every correspondence edge has its own favourable circumstances and burdens and as

indicated by vendor and application the best possible correspondence edge is picked. Table

5-1 below summarizes a correlation between principle structure boundaries.

Table 5-1: SPI and I2C comparison

Specifications SPI I2C

Complexity Complex as device increases Easy to chain many devices
Speed Faster slower

Number of wires 4 2
Duplex Full Duplex Half Duplex

Number of devices Many, but there are practical limits
and may get complicated

Up to 127 but may get complex as devices
increases

P a g e | 116

Number of masters
and slaves

Only 1 master but can have multiple
slaves.

Multiple slaves and masters

5.2.4 The instruction cycle/ the fetch-decode-execute cycle.

Fetch-execute cycle is a standard procedure that depicts the means of sending and accepting

information from/to the processor and memory that began by press a catch or programming

order (turned on) and end with shut-day break. This procedure is finished by the CPU and

consists of four primary stages: the get stage, the unravel stage, the execute stage and rehash

Cycle. At the point when a memory read activity happens, information is perused from a

memory address, at that point taken to the processor, when a memory compose activity

happens, information is taken from the processor, at that point kept in touch with the

memory. As a matter of first importance, the working framework stacked the information and

the program that follows up on that information into primary memory (RAM). At that point

the CPU is prepared to accomplish some work as elucidated below [41].

• Fetching stage: the initial step where the CPU brings a few information and directions

(activity that must be performed by the information) from primary memory. At that

point store them in registers (its own inner brief memory zones) this is known as the

'fetch some portion of the cycle'. To accomplish this the CPU utilize fundamental

equipment way which is the address bus, the next address of the following thing to be

brought on the location transport is set by CPU, from this location information moves

from the principle memory into CPU by information transport.

• Decode stage: in this sequence, CPU comprehends the brought guidance; this

procedure is called decode. CPU comprehend a characterized set of orders called the

guidance set, CPU translates the guidance and plans different zone inside the chip

prepared of the following stage.

• Execute: information preparing is accomplished now, and the guidance is done on the

information. The consequence of this procedure is put away in other register.

Guidance execution is exceptional for each instruction.

• Repeat Cycle: after the execute stage is finished, the CPU sets itself up to start another

cycle again.

P a g e | 117

During the fetch-execute cycle the control unit, information transport and address transport

are all being used as follows:

• The control unit will direct the clock speed of the fetch-execute cycle, and enact either

the read or write line.

• The address transport will hold the location that is being obtained to in primary

memory.

• The information transport will move the information contained in the memory

address forward and back between the processor and the memory address.

5.2.5 Accelerators.

IoT is associated universe of capacities, applications and administrations which empower

association between physical articles embraced by advancements (for example Sensors,

actuators, RFID, remote, portable, cloud and web). This quick increment of advancement,

requests and focal points of IoT that emphasizes the requirement for IoT quickening agents

to perform the following:

• Service the beneficial devices to get new viewpoints into activities and dynamic

help to ventures.

• Provide improvement of uses.

• Unified cooperation for administrators and supervisors.

• Raising cautions dependent on real-time data, connection of different occasions

alongside examination and disconnected investigation.

IoT accelerator is a cloud-based IoT arrangement normally utilizes devoted application code

and cloud-based administrations to run gadget network, remote monitoring, information

handling and examination, and introduction. IoT application accelerator is a light-weight IoT

stage that can be utilized to quickly model, create and send esteem included IoT applications,

arrangements and administrations.

P a g e | 118

Device Adaptor 1 Device Adaptor N Data Aggregation Data Storage
Enterprise system

adaptors

Command Center
Reporting

management
Application

Development APIs

Bussiness rules
management

Policy
management

Applications Enablement layer

Analytics engine
Machine learning

tools
Dashboard and Portal

management

Workflow
management

Events
management

Device Connectivity layer

Data collector Data aggregator
Edge intelligence

framework
Data forwarder

Edge Intelligence layer

Resource Efficiency
Apps

Tracking and
Tracing Apps

Health and Safety
Apps

Personal
Informatics Apps

Telematics Apps

IoT Applications in different verticals

IoT Application Accelerator

S
e

rv
ic

e
 d

e
liv

e
ry

 la
y

e
r

(
T

e
lc

o
 /

p
a

rt
n

e
r

IP
)

Data Layer (3rd party devices and systems)

Smart Phones and Tabs
Enterprise Systems and

Machines
Sensors Meters Machines
Actuators Smart devices

Figure 5-7 shows a stage to quicken IoT administrations engineering which is separated into

gadget and resource the executives (equipment/hardware level) layer, middleware,

administrations layer, application explicit and customer layers [42].

P a g e | 119

Device Adaptor 1 Device Adaptor N Data Aggregation Data Storage
Enterprise system

adaptors

Command Center
Reporting

management
Application

Development APIs

Bussiness rules
management

Policy
management

Applications Enablement layer

Analytics engine
Machine learning

tools
Dashboard and Portal

management

Workflow
management

Events
management

Device Connectivity layer

Data collector Data aggregator
Edge intelligence

framework
Data forwarder

Edge Intelligence layer

Resource Efficiency
Apps

Tracking and
Tracing Apps

Health and Safety
Apps

Personal
Informatics Apps

Telematics Apps

IoT Applications in different verticals

IoT Application Accelerator

S
e

rv
ic

e
 d

e
liv

e
ry

 la
y

e
r

(
T

e
lc

o
 /

p
a

rt
n

e
r

IP
)

Data Layer (3rd party devices and systems)

Smart Phones and Tabs
Enterprise Systems and

Machines
Sensors Meters Machines
Actuators Smart devices

Figure 5-7: The Architecture of the Application Accelerator Platform [42]

IoT Accelerator helps to easy use single unified platforms to provide a global connectivity and

device management that will turn business concepts real. Through powerful services, IoT

accelerator can accelerate time to market, reduce investment risks, and reduce the

complexity of IoT applications and services. This will reduce the barriers to use the IoT. As an

example Remote Monitoring (Version 2 is based on micro-services), Connected Factory

(support OPC-UA protocol) and Predictive Maintenance are considered as most known

accelerators.

5.2.6 Peripherals.

The growth of IoT leads to large number of IoT devices and peripherals. The followings are

considered as IoT peripherals [11], [42], [43]:

• Sensing peripherals,

• Motion peripherals,

• Smart peripherals,

• Accelerometers,

• Microphones,

P a g e | 120

• Switches,

• Screen or speech synthesizers,

• Card readers

These are in addition to many more peripherals which improved and change according to

service or application need. Nowadays, more and more peripheral devices and systems (with

different resources and functions) are connected to each other to make people's lives much

easier and can improve living standards. Among these applications but not all: Mobile phones,

building automation equipment, machine-to-machine equipment, smart technology,

manufacturing control, climate control, tracking, parking and traffic flow, smart key entry,

location, anti-theft, inventory, centralized marketing. .

5.3 Embedded Memory

Due to the increase in the amount of data required for many of these applications (such as

video games and communications), embedded memory plays an important role in digital

system applications. Moreover, the gap between processor speed, main memory and bus

speed (memory wall) is getting wider, so more on-chip memory is needed to keep the

processor busy and increase throughput. In addition to increasing the processor frequency,

integrating multiple cores or functional units called System-on-Chip (SOC) on the same chip

also requires a larger memory size. Embedded memory occupies more than 50% of the chip

area and more than 80% of the number of transistors. Due to the expansion of technology

scale and the demand for high-density memory, process changes have increased. Therefore,

meeting the stringent requirements for performance, power, and yield has brought huge

challenges. Embedded memory not only plays an active role in system performance, but also

affects yield timing and power consumption. The organization of memory and the early

decisions made by the system level and architecture group have a great impact on the role

and memory on the entire system. To overcome these issues, we must consider the trade-

offs of storage unit type, array organization, storage hierarchy, test design and overall storage

subsystem in the early days of [44].

5.3.1 Embedded Systems Memory Types

Many types of storage devices can be used in modern computer systems. You must

understand the differences between them and understand how to use each type effectively.

P a g e | 121

Keep in mind that the development of these devices has taken decades, and the underlying

hardware varies rapidly. The names of memory types often reflect the historical nature of the

development process and are often more confusing than insightful situations. Figure 5-8

classifies memory devices RAM, ROM, or a mixture of the two [45].

The RAM series includes two important storage devices: static RAM (SRAM) and dynamic RAM

(DRAM). The main difference between them is the lifetime of the data they store. As long as

power is applied to the chip, SRAM retains its contents. If the power is turned off or

temporarily disconnected, its contents will be lost forever. On the other hand, the data life of

DRAM is very short-usually about 4 milliseconds. This is true even if the power is continuously

applied.

Memory

ROMHybridRAM

PROM MaskedEPROMFlash EEPROMNVRAMSRAMDRAM

Figure 5-8: Common memory types in embedded systems [45]

SRAM has all the memory attributes to consider when you hear the term Slam. In contrast,

Measure seems to be meaningless. By which the activity of the measure supervisor is to

occasionally restore the information stored in the measure. By restoring the information

before it is terminated, the contents of the memory can be saved for any length of time

required. Therefore, considering all factors, Measure is as valuable as SRAM. When choosing

which type of RAM to use, the frame creator must consider time and cost. SRAM gadgets can

provide amazingly fast access time (about many times faster than Measure), but the

production cost is much higher. In general, only use SRAM where access speed is critical. The

low cost per byte makes Measure attractive any time a large amount of Smash is needed.

Many embedded frameworks combine two types: a small square (a few kilobytes) of SRAM

P a g e | 122

along the basic information method and a larger measure square (or even megabytes) for

everything else [44], [45].

5.3.1.1 Static RAM (SRAM)

SRAM is commonly utilized for fast registers, stores and moderately little memory banks, for

example, an edge cushion on a presentation connector. Interestingly, the primary memory in

a PC is regularly unique Slam (DRAM, D-RAM). SRAM is designed to meet two requirements:

to provide a direct interface to the CPU at a speed that DRAM cannot reach, and to replace

DRAM in systems with very low power consumption. In the first role, SRAM is used as cache

memory to establish an interface between DRAM and CPU. The subsequent main thrust for

SRAM innovation is low force applications. For this situation, SRAMs are utilized in most

compact hardware on the grounds that the Measure revive current is a few significant

degrees more than the low-power SRAM backup current. Numerous classifications of

mechanical and logical subsystems, car gadgets, and comparative, contain static Slam. A few

megabytes of SRAM might be utilized in complex items, for example, advanced cameras,

phones, synthesizers, and so on. SRAM is additionally utilized in PCs, workstations, switches

and edge hardware: interior CPU stores and outer burst mode SRAM reserves, hard plate

supports, switch cushions, and so on. LCD screens and printers likewise ordinarily utilize SRAM

to hold the picture showed or to be printed. Little SRAM supports are additionally found in

CDROM and CDRW drives to cushion track information, which is moved in hinders rather than

as single qualities. The equivalent applies to link modems and comparative hardware

associated with PCs [44], [46].

A SRAM store comprises of a variety of memory cells alongside edge hardware, for example,

address decoder, sense speakers and compose drivers and so on those empower perusing

from and composing into the exhibit. A great SRAM memory engineering is appeared in Figure

5-9.

P a g e | 123

Pre-Charge Circuit

Column Decoder

Global Read/WriteBlock Decoder

Timing Block

R
o

w
 D

ec
o

d
er

Senses Amplifiers & Wire Drivers

Blocks

2mbits

Global I/O (Data Word)

2m+k Columns

2
n

-k
R

o
w

s

A0

A1

An-k-1

An-k
An

SRAM Cell

M1

VDD

WL

M3

M5

M4

M2

M6

BLBL

Figure 5-9: SRAM Architecture [46]

The memory cluster comprises of 2n expressions of 2m bits each. Each piece of data is put

away in one memory cell. They share a typical word-line (WL) in each line and a piece line sets

(BL, supplement of BL) in every section. The elements of each SRAM cluster are restricted by

its electrical qualities, for example, capacitances and protections of the bit lines and word

lines used to get to cells in the exhibit. Consequently, enormous size recollections might be

collapsed into various squares with predetermined number of lines and sections. In the wake

of collapsing, so as to meet the bit and word line capacitance prerequisite each line of the

memory contains 2k words, so the exhibit is genuinely sorted out as 2n−k lines and 2m+k

segments. Each cell can be haphazardly tended to by choosing the fitting word-line (WL) and

bit-line sets (BL, supplement of BL), separately, actuated by the line and the segment

decoders. The fundamental SRAM cell is appeared in inset of Figure 5-9. It comprises of two

cross-coupled inverters (M3, M1 and M4, M2) and two access semiconductors (M5 and M6).

The entrance semiconductors are associated with the word line at their particular door

terminals, and the bit lines at their source/channel terminals. The word line is utilized to

choose the cell while the bit lines are utilized to perform peruse or compose procedure on

the cell. Inside, the cell holds the put away an incentive on one side and its supplement on

the opposite side. The two complementary bit lines are used to improve speed and noise

suppression performance. The voltage transfer characteristics (VTC) passes on the key cell

P a g e | 124

plan contemplations for peruse and compose tasks. In the cross-coupled design, the put away

qualities are spoken to by the two stable states in the VTC. The cell will hold its present status

until one of the inside hubs crosses the switching threshold, VS. At the point when this

happens, the cell will flip its inner state. Consequently, during a read activity, we should not

upset its present status, while during the compose activity we should constrain the inward

voltage to swing past VS to change the state [46], [47].

5.3.1.2 Dynamic RAM (DRAM)

For more than a quarter century, Dynamic Random Access Memory (DRAM)-ICs have been

existed and developed from the most punctual 1-kilobit (Kb) to the ongoing 1-gigabit (Gb) era.

This evolution has been attained through advances in both semiconductor procedure and

circuit structure innovation. Huge advances in process innovation have drastically decreased

element size, allowing ever more elevated levels of joining. These increments in joining have

been joined by significant upgrades in segment respect guarantee that general procedure

arrangements remain practical and serious. Innovation enhancements, in any case, are not

restricted to semiconductor handling. A large number of the advances in process innovation

have been joined or empowered by progresses in circuit structure innovation. As a rule,

progresses in one have empowered advances in the other. To pick up understanding into how

modem DRAM chips are planned, it is valuable to investigate the advancement of DRAM.

DRAM types and methods of activity will be outlined as follows [48], [49]:

• The 1st Generation/1k DRAM: This type of memories is sorted out as a sensible square

of memory components. Its cluster is comprised of 1,024 memory components spread

out in a square of 32rows×32columns.

• The 2nd Generation/4k-64 Meg DRAM: As a second generation, DRAMs can be

distinguished by the presentation of multiplexed address inputs, numerous memory

clusters, and the memory cell of a single transistor/ a single capacitor. Besides, they

offer more methods of activity for more noteworthy adaptability or higher speed

activity.

• The size of this type of memories varies between 4k (4,096address locations x 1

input/output) to 64 Meg i.e. 67,108,864 bits in different sizes as:

o 16 Meg x 4 (16,777,216address locations × 4 input/output)

P a g e | 125

o 8 Meg x 8 (8 Meg address locations × 8 input/output)

o 4 Meg x 16 (4 Meg address locations × 4 input/output)

Furthermore, as a major leap in the second generation is the transition of the power

supply to be single 5V power supply at the density of 64kbit. This transition simplifies

the system design from different aspects such as the memory and the processor. This

is in addition to changing the technology from the NMOS to CMOS in order to fulfil the

concerns over the speed, the size and the power, and the density of 1Mbits.

• The 3rd Generation/Synchronous DRAM: Its design has been modified to include an

interface between 2nd Generation DRAM’s core and the off-chip control. This is in

addition to reserve the clock (CLK) for executing both of commands and operations.

5.3.1.3 Flash Memory

In the past ten years, in the field of semiconductor recycling, the most important miracle is

the unstable development of flash memory showcases, which are affected by PDAs and

various electronic convenience devices (multi-function PCs, mp3 sound players, computer

cameras, etc.). In addition, in the next few years, convenient frameworks will require more

non-volatile recycling, whether it is for information storage applications, with high thickness

and high synthesis throughput, or for code execution settings. In other words, it has fast and

irregular access rights. In view of these market demands, a significant method of arranging

Flash projects and relative progress is to characterize two important parts of the application:

– code storage, where the program or work frame is stored and executed by the chip or

microcontroller, which continuously record and peruse information files related to pictures,

music and voice. Different types of Flash units and structures have been proposed previously.

From design point of view, flash memories can be divided as:

• Fowler-Nordheim Tunneling (FN),

• Channel Hot Electrons (CHE),

• Hot Holes (HH)

• Source Side Hot Electronics (SSHE).

Among these designs, there are now two types that can be regarded as industry standards:

NOR Flash, a common belief in the field of code and information storage due to its

adaptability, and NAND Flash, which is enhanced for the information storage market. In the

P a g e | 126

accompanying content, we will only introduce the basic concepts of NOR flash memory cells,

constant quality issues, improvements and scaling modes. However, most of these

considerations are substantial for NAND, this is due to that they both depend on the concept

of Sliding/floating gate MOS transistor as shown in Figure 5-10 [50]. It depicts the schematic

of floating-gate MOS transistor, where the gate is isolated completely by a dielectric, Control

Gate (CG) that has been administrated by a capacitive coupling, and the Floating Gate (FG).

Being electrically disengaged, the FG goes about as the putting away cathode for the phone

gadget; charge infused in the FG is looked after there, permitting adjustment of the "obvious"

limit voltage (i.e., seen from the CG) of the phone semiconductor. Clearly the nature of the

dielectrics ensures the non-volatility, while the thickness permits the likelihood to program

or delete the cell by electrical heartbeats. Normally the entryway dielectric, i.e., the one

between the semiconductor channel and the FG, is an oxide in the scope of 9–10 nm and is

designated "burrow oxide" since FN electron burrowing happens through it. The dielectric

that isolates the FG from the CG is shaped by a triple layer of oxide–nitride–oxide (ONO). The

ONO thickness is in the scope of 15–20 nm of proportional oxide thickness. The ONO layer as

interpoly dielectric has been acquainted all together with improves the passage oxide quality.

Truth be told, the use of warm oxide over polysilicon suggests development temperature

higher than 1100 C, affecting the underneath burrow oxide.

On the off chance that the passage oxide and the ONO act as perfect dielectrics, at that point

it is conceivable to schematically speak to the vitality band graph of the FG MOS

semiconductor. It very well may be seen that the FG goes about as an expected well for the

charge. When the charge is in the FG, the passage and ONO dielectrics structure likely

boundaries. The nonpartisan (or decidedly charged) state is related with the consistent state

"1" and the adversely charged state, comparing to electrons put away in the FG, is related

with the coherent "0".

P a g e | 127

Control gate

Floating gate

DrainSource

Tunnel Oxide

Interpoly

Dielectric

ρ-substrate

Figure 5-10: A Flash cell schematic cross section [50]

The "NOR" Flash name is identified with the manner in which the phones are orchestrated in

a cluster, through lines and segments in a NOR-like structure.

5.4 Causes and Implications of Memory

IoT system classified into three networks first is the Edge network which contains devices

(Embedded, sensors, actuators that can be constrained or unconstrained) that operate with

external world monitoring, sensing, actuating, etc. Second is the Fog network which is the

Gateway and high-end servers that broker, data collecting and processing, commanding,

analytics, etc. Third is the cloud network which is the cloud platforms and high-end servers

that store and Machine deep learning, without direct active management by the user.

5.4.1 Compute-Constrained Devices

Constrained devices are the edge nodes having (sensors, actuators, smart object or smart

devices micro controller) which can handle a specific application target, linked to gateway-

like devices and return communication with the IoT cloud platforms. They communicate with

low-power and data rate- wireless protocols. IoT have embedded computing devices spread

within it and they are considered the resource constrained. This resources constraint affects

memory, processing capabilities, the low-power radio standards utilized, and constraint the

network interfaces. These embedded constrained devices open opportunities to develop new

application such as smart homes, eHealth and many other applications. However, it needs to

P a g e | 128

have capabilities for performing networking to integrate with the Internet. Table 5-2 presents

a few typical low-power constrained devices [51].

Table 5-2: Different Low-Power Constrained Devices Overview

Type CPU RAM Flash/ROM

Crossbow TelosB 16-Bit MSP430 10 KB 48 KB

RedBee EconoTAG 32-Bit MC13224v 96 KB 128 KB

Atmel AVR Raven 8-Bit ATMega1284P 16 KB 128 KB

Crossbow Mica2 8-Bit ATMega 128L 4 KB 128 KB

As seen from the table that these resources are not providing much storage or memory

capabilities which can form device restriction.

5.4.2 Constrained Node, Constrain Network and Constrained-Node Network

Some basic terms should be identified in order to help in understanding the work of

constrained environment, which is according to the Terminology for Constrained-Node

Networks [52] as:

• Constrained Node: A node where some of the characteristics that are otherwise

pretty taken for granted for Internet nodes at the time of writing are not attainable.

This is often due to cost constraints and/or physical constraints on characteristics such

as size, weight, and available power and energy. The limits on power, memory (flash

and RAM), small computing capabilities, and processing resources lead to upper

bounds on state, code space, and processing cycles, so making optimization of energy

and network bandwidth usage a dominating consideration in design requirements.

Also, some layer-2 services such as full connectivity and broadcast or multicast may

be lacking. The constrained Node can be categorized into three classes shown in the

Table 5-3, which can help in design.

P a g e | 129

Table 5-3: Constrained Node Class

Class RAM Flash Network Stack Security

Class 0 <10 KiB <100 KiB No support No support

Class 1 ≈10 KiB ≈100KiB
Specifically designed

network stack
Supports security

Class 2 ≈50 KiB ≈250 KiB
Capable of supporting

the same network stack
as used on servers

Supports security

• Constrained-Node Network: A network whose characteristics are influenced by being

composed of a significant portion of constrained nodes. A constrained-node network

is always a constrained network because of the network constraints stemming from

the node constraints, but it may also have other constraints that already make it a

constrained network. A constrained network is composed of a lot portion of

constrained nodes which devolved at the edge of IoT system. Main structure block of

Constrained-Node Network is sensors, actuator, cluster, communication channel,

Aggregators, eUtility, Decision Trigger. Those building blocks are discussed below and

shown in Figure 5-11 [52], [53].

P a g e | 130

a
1

1

a
2

2 3
a

3
4

a
4

b
1

b
2

b
3

b
4

5 6 7 8

V
cc

1

0

G
N

D 0 Aggregator

Sensor

Cluster

Communication
Channel

eUtility

Decision
 trigger

eu1

D=f(x,y)

eu2

eu3

C3

C2

C1

a
1

1

a
2

2 3
a

3
4

a
4

b
1

b
2

b
3

b
4

5 6 7 8

V
cc

1

0

G
N

D 0

a
1

1

a
2

2 3
a

3
4

a
4

b
1

b
2

b
3

b
4

5 6 7 8

V
cc

1

0

G
N

D 0

a
1

1

a
2

2 3
a

3
4

a
4

b
1

b
2

b
3

b
4

5 6 7 8

V
cc

1

0

G
N

D 0a
1

1

a
2

2 3
a

3
4

a
4

b
1

b
2

b
3

b
4

5 6 7 8

V
cc

1

0

G
N

D 0

a
1

1

a
2

2 3
a

3
4

a
4

b
1

b
2

b
3

b
4

5 6 7 8

V
cc

1

0

G
N

D 0

x

y If f(x,y) > 200,
set wings flaps to 10 degrees

S6

S8

S9
S10

S7

S5

S4

S3
S2

S1

S13

S14

S15 S11

S12

Figure 5-11: Constrained Node Network [52]

o Sensors: A sensor is an electronic utility that measures physical properties such as

temperature, acceleration, weight, sound, location, presence, identity, etc. All

sensors employ mechanical, electrical, chemical, optical, or other effects at an

interface to a controlled process or open environment, e.g. temperature sensor

and acceleration sensor. Sensors are essential physical component in constrained-

node network and the most important aspects in IoT which is not possible without

sensor technology. Sensors are mostly small size, low cost and consume low

power, and some may have an Internet access capability. Sensors may show these

basic characteristics: Accuracy and Inaccuracy, Range, Resolution, Tolerance,

Precision, Hysteresis effects and dead space Linearity and Sensitivity, Security and

Reliability [52]. Different types could be summarized as [53]:

a. Mobile Phone Based Sensors (like: accelerometer senses the motion and speed

of a mobile phone, camera and microphone sensors which capture visual and

audio information, light sensor)

b. Medical Sensors which can measure many health parameters and monitoring

a patient’s health when they are alone or not in hospital.

P a g e | 131

c. Neural Sensors which measure the neural signals of brain that can be used to

train the brain to focus, have attention, manage stress, and have better mental

health.

d. Environmental and Chemical Sensors which play a major role in monitoring and

control environment to have better usage of environments parameters such

as temperature, humidity, air pressure, gas and water levels sensors and many

other physical environment sensors that are used to reduce energy usage or

pollution levels. Chemical sensor is used in food, pharmacy, biomedical

applications.

o Actuator: Actuator is the unit that obtain physical movement by converting energy

usually electrical, air or hydraulic into mechanical action (enables movement), like

the muscles in human body. In IoT field actuator change electrical energy into

another type of energy according to demand such as light, display, motors, heating

or cooling. According to the actuator operation they are classified to three groups

(electrical, hydraulic and pneumatic).

o Cluster: Cluster is a set of sensors and actuators with the data they output, they

are not physical, and can change their sensors and data any time, in constrained-

node network grouping similar objects (sensors, actuator). It is called clustering

the main purpose of clustering is to easily deal with the objects, maintenance

problem and routing decision, and hence clustering is a solution to increase the

efficiency.

o Communication channel: Communication channel is the physical transmission

medium in which data is transferred (. e.g. USB, wireless, direct). Communication

channel can be disturbances, delays and interruptions so performance, security

and reliability are main issue in communication channel. Communication channels

will have a physical or virtual side to them, or both. Protocols and associated

implementations provide a virtual side; cables provide a physical side. Dataflow

may be unidirectional or bi-directional.

o Aggregators: An aggregator is a software implementation based on mathematical

function(s) that transforms groups of raw data into intermediate, aggregated data.

Raw data can come from any source. Aggregators help in managing ‘big’ data [52].

Aggregator have a low power communication link with thousands sensors.

P a g e | 132

Aggregators is assigned to aggregate information which forward to cloud for final

action, Aggregators merge large volumes of data into lesser amounts.

o eUtility: eUtility is a service or hardware or software that support aggregators

suppling data and enable computing resources and storage as needed. It

executes processes or feed data into the overall workflow of a Network of Things.

o Decision Trigger: Decision Trigger is the end-purpose software which computes

and takes action if needed to satisfy the purpose, specification, and requirements.

Decision trigger should have a corresponding virtual implementation and may

have a unique owner.

5.4.3 The need for Management of constrains devices and constrained devises

restrictions

It is now clear that constrained devices have limited storage capabilities CPU memory as

depicted in Table 5-2, and power resources, so this network itself considered may be as

challenging one. In addition, constrained devices can be connected to unconstrained network,

constrained devices responsible of gathering the information, generating and sending the

information to one or more station. According to this discussion to manage the network is

playing a significant role by monitoring network status, detecting faults, perform actions or

remove faults and maintain normal operation to insure efficiency and application

performance. Energy-Management for constrained devices that is connected to a network

form a challenge. This Energy-Management which is responsible for supplying energy to

various devices and component even devices contained batteries they also monitored and

managed. Constrained devices are having considerable small size and are not fixed. Because

of their size and frequently changing location property they are not able to access the power

all the time. So the low power consumption is universal constraint of the constrained devices.

Either they use battery technologies or they can use some techniques for taking power from

their environment there is a need to manage power which made with long lasting life of

devices. Energy management is especially relevant to the Smart Grid. A Smart Grid is an

electrical grid that uses data networks to gather and act on energy and power-related

information in an automated fashion with the goal to improve the efficiency, reliability,

economics, and sustainability of the production and distribution of electricity [54].

P a g e | 133

Device life cycle and quality with time and environment must consider to not causing a

restriction while using constrained devices. The need for access technology rises up with

constrained devices to not impose a restriction. So the constrained access technologies are a

demand to connect the constrained and traditional unconstrained networks. The need for

Constrained Access Technologies arises due to resource restrictions, embedded devices use

sensors and actuators use the low-power, low-data- rate wireless access technologies like

Digital Enhanced Cordless Telecommunication (DECT), Low-Rate Wireless Personal Area

Networks (LR-WPAN), Ultra Low Energy (ULE), or Bluetooth for network connectivity. In this

case, it is important for the network management system to be aware of the restrictions

imposed by these access technologies to efficiently manage these constrained devices. In

particular, such low-power, low data-rate access technologies have small frame sizes. So it

would be important for the network management system and management protocol to

choose craft packets in a way that avoids fragmentation and reassembly of packets since this

can use valuable memory on constrained devices. Devices using such access technologies

might operate through a gateway that operates between these access technologies and more

traditional Internet protocols. A hierarchical approach to device management is useful,

wherein the gateway device is responsible of devices connected to it, while the network

management system conducts management operations only to the gateway. A new internet

protocol is combined and allows group communication named Constrained Application

protocol (CoAP), used with constrained nodes and constrained networks which allow access

virtually to huge number of smart objects anywhere and limits the restricted resources such

as power, CPU, and memory which turns groups of resources into entities [54], [55].

Security and privacy issue is an essential parameter for reliable and safe communication

between constrained-node networks. However protecting the communication between

devices with limited resources is a complex issue specially when transmitting sensitive data

such military and medical application. On other hand the cost factor will rise up. Some

protocols developed for reliable and safe communication between constrained-node network

to ensure securing and packet delivery 100% such the ContikiMAC Radio Duty cycle protocols.

The National Institute of Standards and Technology (NIST) improve how to manage security

guidelines and released a cyber-security framework document. The NIST cybersecurity

framework defines five major functions (Identify, protect, detect, respond, recover). Privacy

P a g e | 134

can only be ensured if data owner has fully control over owned information, owner must

know that what data is collected, who is collecting, when it was collected and where it is

processed. Another point, the data collector must be authorized by service provider e.g.,

authorize transportation organizations, medical authorize organizations, authorize research

institutions, etc. Furthermore, the data should only be stored for limited time under need and

demand otherwise it must be destroyed immediately [55], [56].

5.4.4 Applications for Constrained Devices

The constrained devices have wide range of applications in my areas, which they are

summarized as:

• Medical Applications: constrained devices used in wide range for health supervision and

control, such as

o Blood pressure and heart rate application.

o Pacemaker that help to control heartbeat.

o Hearing aids that pick up sounds and amplifies the sounds going into ear.

o Fitness and wellness application that calculate the fitness indicators, motion rate,

sleep, and weight control, encourage user to exercise and empower self-

monitoring.

o At the health organization level which provides the services of medical application

that used constrained devices not attached to human bodies only, but also used it

in its infrastructure to monitor or to ensure treatment applied properly or in

emergency- notification systems or remote patient monitoring.

o Dental Health: records brushing information to study the person’s brushing habits

and share the statistics with the dentist.

• Building Automation: lighting, pumps, boilers, environment temperature, building

plants irrigation, Elevator control, air fans, CO2 levels, and more equipment. Unit

mechanical, electrical, and electronic inside buildings can be automated by a network

of constrained devices to better manage that equipment and optimize energy spend. It

requires the deployment of a large number (10 to 100,000) of sensors that monitor the

status of devices, parameters inside the building. It needs Controllers with different

specialized functionality for areas within the building or the totality of the building.

P a g e | 135

• Transport Application: connecting cars, vehicle-tracking systems, smart parking,

electronic toll-collection systems, traffic light, logistic and fleet management, vehicle

control, and traffic and transportation management. Safety and roadside assistance are

some of application employed constrained devices to monitor and control

transportation system. Here some advantages and enhancement for transportation

authorities:

o Improved customer services and dependable transportation.

o Increased safety: Sensor data tracks speeds, vehicle part conditions and

temperature, and the number of cars at an intersection. Authorities can use this

information to improve the safety of transit system operations.

o Reduced congestion, energy use, traveling time by using real time data to

Vehicle forwarding and meet demands.

o Minimize operating costs and improve system capacity.

• Home Automation: It controls lighting, heating, doors and windows, air conditioning,

appliances; gardens (e.g. detect dryness in the soil to trigger the irrigation system,

Detect grass height to trigger Lawn mowers, entertainment and home security devices

to improve convenience, comfort, energy efficiency, and safety).

P a g e | 136

6 IoT Microcontrollers, Sensors for

Data Acquisition and Actuators

Author(s): Fabrizio Granelli

This Photo by Unknown Author is licensed under CC BY-SA

https://www.electronics-lab.com/meadow-full-stack-net-standard-iot-platform/
https://creativecommons.org/licenses/by-sa/3.0/

P a g e | 137

6.1 Implementing the Internet of Things

The major feature of the Internet of Things is the fact that it brings the Internet in the real

world where we live. With the Internet of Things, objects and places can communicate by

using Internet technology. This section sheds some light on how we can enable this

interconnection between “our” World and the Digital World of the Internet.

Interaction between the World and computers can be achieved by means of sensors and

actuators (that we will discuss later). However, the Internet of Things goes beyond this, and

it promises to integrate the Internet in the real world. For doing this, we cannot rely only on

common computing platforms such as computers, laptops or mobile phones, but we need

simpler, smaller and less consuming devices to “read” sensors and “control” actuators. Those

are the microcontrollers.

The Internet of Things can be implemented by integrating the following technologies:

• Microcontrollers: the «brain» capable of interacting with the World (sensing and

actuating);

• Real-time systems: IoT systems should be capable of operating in real-time and with

bounded delay;

• Embedded software: specific software written for microcontrollers

The following sub-sections provide an introduction to those concepts.

6.2 Microcontrollers

A microcontroller, or microcontroller unit (acronym: MCU), is a small computing machine on

a single metal-oxide-semiconductor (MOS) integrated circuit (IC) chip. To some extent, a MCU

is similar to a system on a chip (SoC), but it is still less sophisticated than that; in practice, a

SoC may include a microcontroller as one of its components.

The main difference between micro-controllers and micro-processors, besides the small

factor, consists in the fact that micro-controllers are designed for embedded applications,

while micro-processors are used in personal computers or general purpose computing

architectures.

P a g e | 138

A microcontroller consists of one or more CPUs (processor cores), with the addition of

memory and programmable input/output peripherals. Input/output connections enable the

microprocessor to acquire data in input and send data or commands in output.

(a) (b) (c)

Figure 6-1: Microcontrollers examples: two ARM MCU (a), a PIC MCU (b), and Arduino UNO (c).

In a microcontroller, programs are loaded in the memory. Such memory is typically integrated

on the chip, as well as some RAM. Technologies for storage are ferroelectric RAM, NOR flash

or OTP ROM.

6.2.1 Examples of microcontrollers

When designing IoT systems and services, it is important to have a good knowledge about the

available platforms and their specific characteristics, in order to identify the one which is best

suited for our goals.

6.2.1.1 Arduino Uno

Arduino Uno is a micro-controller belonging to the Arduino family, which is an open-source

prototyping platform, consisting of a programmable circuit board and an Integrated

Development Environment (IDE) to upload the code to the physical board. Arduino can be

programmed directly by any personal computer using the IDE and a USB cable.

An important and remarkable aspect is that Arduino is completely open-source. Indeed, both

its software and hardware specification are available, so that anyone can assemble the

simplest Arduino modules themselves by hand or even work at improving and contributing to

its design. Pre-assembled Arduino modules are also available and they can be purchased at a

P a g e | 139

relatively low price. Open source projects like Arduino lower the entry barrier for developers

that are looking to experiment with interactive objects, especially in the Internet of things.

As an example from the Arduino family, Arduino Uno [57] is a micro-controller board based

on the ATmega328P chipset. Its main features include:

• 14 digital input/output pins (of which 6 can be used as PWM [Pulse Width Modulated]

outputs)

• 8 analog inputs

• a 16 MHz ceramic resonator (CSTCE16M0V53-R0)

• a USB connection, a power jack, an ICSP header and a reset button.

6.2.1.2 Arduino Mega

The Arduino Mega 2560 is another micro-controller board belonging to the Arduino family,

and it is based on the ATmega2560 chipset. Its main features are:

• 54 digital input/output pins (of which 15 can be used as PWM [Pulse Width

Modulated] outputs)

• 16 analog inputs, 4 UARTs (hardware serial ports)

• a 16 MHz crystal oscillator

• a USB connection, a power jack, an ICSP header, and a reset button.

6.2.1.3 Raspberry PI

The Raspberry Pi is a low cost, credit-card sized computer that plugs into a computer monitor

or TV, and it uses a standard keyboard and mouse. It is a capable compact device that enables

to explore computing, to build IoT software (for its small form factor and limited power

consumption) and to learn how to program. As a difference with respect to Arduino,

Raspberry Pi is actually a complete computer architecture, not a simple micro-controller.

The Raspberry Pi is targeted to operate in the open source ecosystem. Being a small PC, it

runs Linux (a variety of distributions, and recently Windows 10, too), and its main supported

operating system, Raspberry OS, is open source and runs a suite of open source software.

The Raspberry Pi Foundation contributes to the Linux kernel and various other open source

projects as well as releasing much of its own software as open source. It should be noted that

P a g e | 140

even if the Raspberry Pi's schematics are released, the board itself is not open hardware, as

the Raspberry Pi Foundation relies on related income.

The main features of Raspberry Pi are:

• Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz

• 2GB, 4GB or 8GB LPDDR4-3200 SDRAM (depending on model)

• 2.4 GHz and 5.0 GHz IEEE 802.11ac wireless, Bluetooth 5.0, BLE

• Gigabit Ethernet port

• 2 USB 3.0 ports; 2 USB 2.0 ports.

• Raspberry Pi standard 40 pin GPIO header (fully backwards compatible with previous

boards)

• 2 × micro-HDMI ports (up to 4kp60 supported)

• stereo audio and composite video port

• H.265 (4kp60 decode) and H264 (1080p60 decode, 1080p30 encode) support

• OpenGL ES 3.0 graphics

• Micro-SD card slot for loading operating system and data storage

• Power over Ethernet (PoE) enabled (requires separate PoE HAT)

6.2.1.4 ARM Microcontrollers

ARM (acronym for Advanced RISC Machine and originally Acorn RISC Machine) is a family of

reduced instruction set computing (RISC) architectures for computer processors. As such,

their architecture typically requires fewer transistors than those with a complex instruction

set computing (CISC) architecture (such as the x86 processors found in most personal

computers), which improves cost, power consumption, and heat dissipation.

Today, ARM represents an interesting solution for light, portable, battery-powered devices,

but it is also becoming popular for servers and desktops. Moreover, ARM is also growing in

relevance for deploying power-efficient solutions in the case of supercomputers or data

centers.

For the above reasons, ARM microcontrollers are extremely popular as they represent a

building block for several low-power devices. The following tables presents a sample of ARM

MCU specifications:

P a g e | 141

Figure 6-2: ARM Cortex MCUs specifications.

6.3 Real-time Systems

A real-time system is described as one which "controls an environment by receiving data,

processing them, and returning the results sufficiently quickly to affect the environment at

that time".

Real-time systems need to be programmed by proper real-time software environments. For

real-time software development may follow the following approaches: synchronous

programming languages, real-time operating systems, and real-time networks.

6.4 Embedded Software

Embedded software is used to program and control embedded systems.

Embedded software is a specific type of computer software, specialized for the particular

hardware to run onto. Moreover, this kind of software is characterized by time and memory

constraints. Embedded software is sometimes used in substitution of the term firmware.

P a g e | 142

Typically, not all functions of embedded software are initiated or controlled via a human

interface, but through machine-interfaces instead.

To make some examples, embedded software is used to control the electronic components,

robots, appliances, televisions, set-top-boxes, cars, security systems, digital watches, etc.

6.5 IoT Operating Systems

The main idea of the Internet of Things is connectivity between the web and sensor-based

tiny devices on a system. In this scenario, heterogeneity is a key aspect to consider, as each

IoT device has its perspective. So, variability is obvious if we consider operating systems for

the Internet of Things. Indeed, most of them are focused on bringing interoperability for a

heterogeneous set of devices and networks.

An IoT operating system is software that ensures connectivity between IoT applications and

embedded devices.

The following subsections propose some open source IoT operating systems, which are

practical to use for IoT devices.

6.5.1 Arduino IDE

The open-source Arduino Software (IDE) is written in Java and based on Processing and other

open-source software, and it can be used with any Arduino-compatible board [58]. The

purpose of the Arduino IDE is to provide a programming interfaces to write code and upload

it to the board. The development environment runs on any well-known operating system,

including Windows, Mac OS X, and Linux.

6.5.2 ARM MCU Programming

Different Microcontroller Development Kits for ARM based microcontrollers are available

(including Arduino IDE). Typically, it is necessary to use a specific hardware programmer to

interact with the MCU.

ARM programming libraries are hardware specific.

6.5.3 Contiki

P a g e | 143

Contiki [59] and latter Contiki-NG is an open-source IoT operating system for low power

microcontrollers and other IoT devices. Contiki enables communications across Internet

protocol IPv6 and IPv4 networks. Contiki is an operating system for networked, memory-

constrained systems with a focus on low-power wireless Internet of Things devices. Contiki is

used for managing street lighting, sound monitoring in smart cities, radiation monitoring, and

alarms management. The software is open-source software and released under a BSD license.

Core language used in Contiki is C language.

Contiki is characterized by an extremely small footprint: only about 10 kilobytes of random-

access memory (RAM) and 30 kilobytes of read-only memory (ROM). It natively supports

multitasking, the Internet Protocol Suite (TCP/IP stack) and many IoT-related wireless

protocols, such as 6lowPAN, RPL and CoAP. The complete system deployment, including a

graphical user interface, needs about 30 kilobytes of RAM.

6.5.4 Android Things

Android Things [60] is an Operating System for the IoT developed by Google. Android Things

focuses on low-power and memory constrained Internet of Things (IoT) devices, which are

usually built from different MCU platforms.

Android Things follows a similar resource-constrained formula as Contiki, with a lightweight

implementation requiring only 32-64 Kb of RAM. This lightweight OS supports both Bluetooth

Low Energy and Wi-Fi.

On a side note, in addition to Android Things, Google also introduced the Weave protocol,

which allows IoT to communicate with other compatible devices.

6.5.5 Riot

Riot [61] belongs to the class of free open source Operating Systems for the Internet of Things,

and it is called the Linux of the IoT world, as it is supported by a large development community

under GNU Lesser General Public License.

However, Riot is different from other similar OSs. First of all, it is based on a microkernel

architecture. Secondly, as a difference with similar lightweight OSs presented above (such as

TinyOS or Contiki), it allows the usage of high level programming languages such as C and C++.

P a g e | 144

Riot runs on 8-bit (such as AVR Atmega), 16-bit (such as TI MSP430) and 32-bit (such as ARM

Cortex) processors. A native port also enables RIOT to run as a Linux or macOS process,

enabling use of standard development and debugging tools such as GNU Compiler Collection

(GCC), GNU Debugger, Valgrind, Wireshark etc.

RIOT provides multiple network stacks, including IPv6, 6LoWPAN, or Content centric

networking and standard protocols such as RPL, User Datagram Protocol (UDP), Transmission

Control Protocol (TCP), and CoAP. Riot provides full multithreading and real-time abilities, as

well as SSL/TLS, which is supported by popular libraries such as wolfSSL.

6.5.6 Apache Mynewt

Apache Mynewt is an IoT OS built for tiny embedded IoT devices [62]. It is a real-time modular

operating system dedicated to the IoT ecosystem, made available under Apache License 2.0.

Apache Mynewt supports priority-based scheduling, preemptive multithreading, multistage

software watchdog, memory heap and memory pool allocation, etc.

As in previous cases, the OS is extremely lightweight, with a 6 kB kernel. This makes Apache

Mynewt a suitable solution for building embedded systems (industrial IoT equipment, medical

devices) on top of different microcontroller platforms. The OS is designed for connectivity,

and it comes with a full implementation of the Bluetooth Low Energy 4.2 stack. The basic OS,

with the inclusion of BLE and various utilities such as the default file system, console, shell,

logs, stats, etc., reaches an image size of approximately 96 KB on the Nordic nRF51822

Bluetooth SoC.

6.5.7 Huawei LightOS

LightOS is an IoT Operating Systems by Huawei that provides a standard API for the diverse

IoT fields. LightOS [63] is a secure, interoperable, low-power operating system.

LightOS uses middleware to remove the extra cost for the development of IoT devices, and it

contains one of the smallest kernels (6kB), comparing with other operating systems.

Various network access protocols are supported: NB-IoT, Ethernet, Bluetooth, Wifi, Zigbee,

and more.

P a g e | 145

6.5.8 Zephyr

Zephyr [64] is a real-time operating system (RTOS) built for IoT applications supported by the

Linux Foundation. The size of the OS image is in line with the previously described

alternatives, with 8kb of RAM and 512 kb of ROM.

Zephyr includes: a small kernel, a flexible configuration and build system for compile-time

definition of required resources and modules, implementation of a relevant set of protocol

stacks (IPv4 and IPv6, OMA LWM2M, MQTT, 802.15.4, Bluetooth Low Energy, CAN), a virtual

file system interface with several flash file systems for non-volatile storage, and management

and device firmware update mechanisms.

Zephyr inherits the Kconfig and device tree functionalities for its configuration from the Linux

kernel. However, such functionalities are implemented in Python for portability to non-Unix

operating systems. Zephyr software is based on the CMake package, which allows Zephyr

applications to be built on Linux, macOS and Microsoft Windows.

6.5.9 Snappy

Snappy [65] is a Ubuntu core IoT OS, especially developed for Raspberry Pi. It derives from

the Linux package “snap”, which includes libraries, kernel, and major applications.

Snappy guarantees strong security to IoT devices with the help of Ubuntu community

research. Snappy distributes applications as snaps, being its native packaging system.

6.5.10 TinyOS

TinyOS [66] is a component-based open-source operating system, developed by the TinyOS

Alliance. The core language of TinyOS is nesC, which is a variation of the well-known of C

language. A specific and characterizing component of TinyOS is the availability of abstractions

to support IoT systems functionalities, such as, for example, sensing, packet communication,

routing, etc.

TinyOS targets low-power wireless devices, such as those used in wireless sensor networks

(WSNs), smart dust, ubiquitous computing, personal area networks, building automation, and

smart meters.

6.5.11 Fuchsia

P a g e | 146

Fuchsia [67] is a microkernel-based operating system with effective connectivity solutions.

Fuchsia runs well in low powered devices. The use of Node.js on operating system ensures

application to run on smartphones, tablets as well as IoT devices.

This OS is quite flexible in terms of programming, since it supports Dart, Go, Rust, C, C++.

6.5.12 Windows IoT

Based on the former Windows Embedded, Windows IoT is a family of operating systems

designed by Microsoft for use in embedded systems. Windows IoT is not an open source OS.

Windows Embedded operating systems are provided to original equipment manufacturers

(OEMs), in order to pre-load it on their hardware.

Windows 10 IoT represents basically an ARM version of Windows 10. Windows IoT is aimed

at IoT connectivity and cloud integration.

6.5.13 TizenRT

TizenRT [68] is a Linux based operating system for both mobile applications and small

embedded systems, based on a shared infrastructure called “Tizen Common”. TizenRT can

support IoT devices and services, and upgraded versions of TizenRT can be integrated in smart

TV, vehicles, home appliances, etc.

TizenRT is compatible with different programming languages for developing apps and

services, including C, C++, and Html5.

6.5.14 Raspbian or Raspberry Pi OS

Raspberry Pi is one of the most used devices for IoT development, and Raspbian (now called

Raspberry Pi OS) is its main operating system [69]. Raspberry Pi OS represents the Debian

based IoT Operating System for all models of Raspberry Pi, even though other OSs can be

deployed on Raspberry Pi devices, such as Ubuntu.

Raspberry Pi OS is highly optimized for the ARM CPUs within the Raspberry Pi line of compact

single-board computers. In general, Raspberry Pi OS uses a modified LXDE as its desktop

environment with the Openbox stacking window manager. Raspbian provides a large number

of pre-installed IoT software for general use, experimental, educational purposes, etc. and it

is possible to adapt various Linux software to run on the Raspberry Pi platform.

P a g e | 147

6.5.15 FreeRTOS

FreeRTOS [70] is an open-source microcontroller-based operating system for IoT

development. FreeRTOS provides methods for multiple threads or tasks, semaphores and

software timers. Moreover, it supports a tick-less mode for low power applications as well as

thread priorities.

FreeRTOS is designed with simplicity in mind. Indeed, the kernel itself consists of only three C

files. This makes the code readable, easy to port, and maintainable, even though there are a

few assembly functions included where needed (especially in architecture-specific scheduler

routines). As a consequence, the memory footprint is only around 6-15kb, making Free RTOS

suitable for small and low power microcontrollers.

FreeRTOS has also an Amazon extension, that uses the cloud service of Amazon Web Service,

called AWS IoT Core, to run IoT applications.

6.5.16 Embedded Linux

Embedded Linux [71] is an operating system built for embedded devices based on the Linux

kernel. The Linux kernel has been historically ported to a variety of CPUs which are not only

primarily used as processors of a desktop or server computer, but also ARC, ARM, AVR32, and

others. In this framework, the Embeddable Linux Kernel Subset is a Linux distribution that fits

on a floppy disk for outdated or low resource hardware.

Embedded Linux requires 100kB space in memory which makes it faster and reliable, even if

larger than other IoT OSs. Moreover, embedded applications such as SQL Lite, Boa, httpd,

PEG, NANO are supported.

6.5.17 mbed OS

Mbed is a free and open source operating system working on an ARM processor [72], thus

appropriate for IoT projects. Mbed OS provides the Mbed C/C++ software platform and tools

for creating IoT microcontroller firmware. The Operating System consists of core libraries that

provide the microcontroller peripheral drivers, networking, RTOS and runtime environment,

build tools and test and debug scripts. The network connections can be secured by using

SSL/TLS libraries such as Mbed TLS or wolfSSL.

P a g e | 148

mbed OS supports a large number of network connectivity standards, including Wifi,

Bluetooth, 6LowPan, Ethernet, Cellular, RFID, NFC, and others.

6.6 Sensing components and devices

IoT devices are built from hardware tailored to interact with the physical world. Simple stand-

alone electronic circuits can be made to repeatedly flash a light or play a musical note.

However, those are not the kind of electronic circuits and component that we are looking for

in the Internet of Things scenario.

Indeed, in the framework of IoT applications and services, the electronic components need to

be capable to communicate with the “real world”. Such capability can be expressed by

• reading an input signal from an “ON/OFF” switch, or

• activating some form of output device to illuminate a single light

Depending on quantity being managed and whether the device senses or perform actions in

the physical world, we can derive the table below that, for different physical parameters,

provides a short overview of the technological devices to deploy.

Quantity being
Measured

Input Device
(Sensor)

Output Device
(Actuator)

Light Level

Light Dependant Resistor (LDR)
Photodiode

Photo-transistor
Solar Cell

Lights & Lamps
LED’s & Displays

Fibre Optics

Temperature

Thermocouple
Thermistor

Thermostat
Resistive Temperature Detectors

Heater
Fan

Force/Pressure
Strain Gauge

Pressure Switch

Load Cells

Lifts & Jacks
Electromagnet

Vibration

Position

Potentiometer
Encoders

Reflective/Slotted Opto-switch
LVDT

Motor
Solenoid

Panel Meters

Speed
Tacho-generator

Reflective/Slotted Opto-coupler

Doppler Effect Sensors

AC and DC Motors
Stepper Motor

Brake

Sound
Carbon Microphone
Piezo-electric Crystal

Bell
Buzzer

Loudspeaker

P a g e | 149

Figure 6-3: Common sensors and actuators.

6.6.1 Sensors

Sensors are one of the basic components of IoT systems. Sensors can be used to sense a wide

range of different energy forms such as movement, electrical signals, radiant energy, thermal

or magnetic energy etc.

In order to perform actions in the real world, we also need actuators. Actuators can be used

to switch voltages or currents.

More in general we can define:

• Sensors: devices which perform an “Input” function. They “sense” a physical change

in some characteristic that might be modified in response to some excitation, for

example heat or force, and convert that into an electrical signal.

• Actuators: devices which perform an “Output” function, and are used to control some

external device, for example movement or sound.

In general, both sensors and actuators are electrical transducers. Indeed, they are used to

convert energy of one kind into energy of another kind. For example, a microphone (input

device) converts sound waves into electrical signals for the amplifier to amplify (a process),

while a loudspeaker (output device) converts these electrical signals back into sound waves.

Analog Sensors produce a continuous output signal or voltage which is generally proportional

to the quantity being measured. Indeed, most physical quantities to be measured as

continuous in nature, including Temperature, Speed, Pressure, Displacement, Strain, etc.

Digital Sensors produce a discrete digital output signals or voltages that are a digital

representation of the quantity being measured. Digital sensors produce a binary-encoded

output signal in the form of a sequence of logic “1s” and a logic “0s”. Depending on the specific

sensor, the values might represent a single “bit” at a time (serial transmission) or a sequence

of bits representing a digital sample of the input signal (parallel transmission).

6.6.1.1 Position Sensors

Position sensors are sensors capable of measuring position information. Position can be

measured as distance, angle, geographical coordinates, etc.

P a g e | 150

The most commonly used of all the “Position Sensors” is the potentiometer because it is an

inexpensive and easy to use position sensor. Basically, a potentiometer enables to measure

the angle of rotation of an object.

The potentiometer is characterized by a wiper contact linked to a mechanical shaft that can

be move in either an angular (rotational) or a linear (slider type) movement. The resistance

value between the wiper/slider and the two end connections changes due to the different

positions, providing an electrical signal output that is proportional to the actual wiper position

on the resistive track and its resistance value. Therefore, resistance is proportional to the

corresponding position.

Figure 6-4: Different types of potentiometers.

Another position sensor is the proximity sensor, that detect nearby objects. The proximity

sensor can be built in the form of an inductive proximity sensor. In this case, the system

consists of the following main components: the oscillator, which produces the

electromagnetic field, the coil which generates the magnetic field, the detection circuit which

detects changes in the field (e.g. when an object enters in the promixity) and the output

circuit which produces the output signal, either with normally closed (NC) or normally open

(NO) contacts.

Inductive proximity sensors allow for the detection of metallic objects in front of the sensor

head without any physical contact of the object itself being detected.

6.6.1.2 Temperature Sensors

P a g e | 151

Temperature sensors are used to measure the temperature of the environment. A thermistor

is a special type of temperature sensor, which consists of a resistor which changes its physical

resistance when exposed to changes in temperature.

Figure 6-5: The thermistor.

As an alternative, it is possible to use a thermocouple. The operating principle of a

thermocouple is very simple and basic. When fused together, the junction of the two

dissimilar metals (such as copper and constantan) produces a “thermo-electric” effect. Such

effect provides a constant potential difference of only a few millivolts (mV) between themn

and it varies based on the operating temperature.

6.6.1.3 Light Sensors

Light Sensors are photoelectric devices that convert light energy (photons) whether visible or

infra-red light into an electrical (electrons) signal. Typically, they provide low voltage or low

current measurements, therefore proper amplification is required in order to “read” the

corresponding values from the sensor.

P a g e | 152

Figure 6-6: LDR circuit including the Arduino microcontroller.

6.6.1.4 Sound Sensors

Sound sensors can also be defined as sound transducers. A well-known sound transducer that

can be classed as a “sound sensor” is the microphone. The microphone measures the

“acoustic” pressure against its flexible diaphragm and it produces an electrical analogue

output signal which is proportional to the pressure value.

6.6.1.5 Distance Sensors

Distance sensors are used to measure the distance between a target and the sensor.

A typical way to compute the distance from physical objects is to use ultrasonic sensors. Such

sensors operate by emitting sound waves with a frequency that is too high for a human to

hear. Such sound waves travel through the air with the speed of sound, which corresponds to

approximately 343 m/s.

If there is an object in front of the sensor, it will reflect the sound waves back to the

transmitter and the receiver of the ultrasonic sensor detects them. The resulting distance

between the sensor and the object can be calculated by measuring how much time passed

between sending and receiving the sound waves, e.g.:

Distance (cm) = Speed of sound (cm/µs) × Time (µs) / 2

For example, if the sensors measures a flight time equal to 2ms:

Distance (cm) = 0.0343 (cm/µs) × 2000 (µs) / 2 = 34.3 cm

P a g e | 153

Figure 6-7: Basic concept of sonar (image from Wikimedia).

An alternative to sound waves is to use light. In this framework, one of the most relevant

sensors is the LiDAR. The LiDAR, or light detection and ranging (sometimes also referred to as

active laser scanning), sensor is one remote sensing method that can be used to map structure

including vegetation height, density and other characteristics across a region.

By analysing the LiDAR output it is possible to directly measures the height and density of

vegetation on the ground, making it an ideal tool for scientists studying vegetation over large

areas.

6.6.2 Actuators

Actuators convert an electrical signal into a corresponding physical “effect” on the

environment, such as movement, force, sound etc. As discussed earlier, an actuator can be

also classified as a transducer, since it transforms one type of physical quantity into another.

Actuators are typically activated or operated by a low voltage command signal.

Actuators can be classified as either binary or continuous devices based upon the number of

stable states their output has.

6.6.2.1 Electrical Relays

Electrical relays and contactors use a low-level control signal to switch a higher voltage or

current supply using a number of different contact arrangements.

P a g e | 154

Figure 6-8: The electrical relay structure.

6.6.2.2 DC Motors

DC (Direct Current) Motors are electromechanical actuators, which use the interaction of

magnetic fields and conductors to convert the electrical energy into rotary mechanical

energy.

6.6.2.3 DC Servo Motor

P a g e | 155

A servo motor consists of a DC motor, reduction gearbox, positional feedback device and an

error correction mechanism. The rotation speed or position is controlled by a positional input

signal or reference signal applied to the device.

Figure 6-9: The architecture of a servomotor (image from Wikimedia).

6.6.2.4 Loudspeaker

Loudspeakers belong to the family of audio actuators. They are indeed sound transducers and

basically represent the exact opposite of microphones. The function of loudspeakers is to

convert complex electrical analogue signals into sound waves as close as possible to the

original input audio signal.

Loudspeakers are available in different shapes, sizes and frequency ranges. Frequency ranges

are defined depending on the intended application (e.g. voice, music, other). The most

common types of loudspeakers include moving coil, electrostatic, isodynamic and piezo-

electric ones. Moving coil type loudspeakers are by far the most commonly used speaker in

electronic circuits, kits and toys.

P a g e | 156

7 IoT Connectivity

Technologies

Author(s): Cristina López Bravo

 Felipe Gil Castiñeira

 René Lastra Cid

This Photo by Unknown Author is licensed under CC BY-SA

https://geobrava.wordpress.com/2015/05/05/how-mobile-device-operating-systems-landscape-is-evolving/
https://creativecommons.org/licenses/by-sa/3.0/

P a g e | 157

7.1 Introduction

An essential part of IoT is the connectivity that allows devices to “talk” among them and with

backend services. One of the key characteristics of IoT is the “interconnectivity”. IoT devices

should be able to be connected with other devices and the infrastructure [6]. Connectivity

and networking are also one of the three layers for the IoT architecture [6] [9] [10] [11].

Nevertheless, there is not just one “Internet of Things”. There is a diverse range of use cases

and applications that specify very different requirements, so it is not possible to find a “one-

size-fits-all” solution for communications.

Different technologies jcoexist and selecting the right communication technology for a new

IoT deployment requires defining strategic, financial and other objectives. The

communication technology requirements can be divided in three categories:

• Technical requirements, such as coverage, energy efficiency, data rate, mobility

support, etc.

• Commercial requirements, such as Quality of Service, cost, security or scalability.

• Ecosystem requirements, such as the readiness of the technology or its global reach.

As stated before, no one single solution is ideal for all the use cases. Furthermore, there are

different competitors trying to establish their market dominance and ecosystem. Probably, in

the future, some technologies will emerge among the others and become leaders.

7.1.1 Technologies for connectivity

Wireless communication technologies satisfy the requirements for most IoT use cases.

Although wired technologies may be useful for certain situations, wireless solutions provide

clear advantages:

• Simpler installation

• Facilitate the reconfiguration of the architecture (replacing nodes, changing their

location, adding new devices, etc.)

• Support for mobility

Thus, this course is focused on the different wireless technologies.

P a g e | 158

Figure 7-1: Wireless communications design constraints (source: Telenor)

There are different design constraints we have to consider when selecting a wireless

technology (Figure 7-1):

• Power consumption

• Coverage range

• Bandwidth

• QoS requirements (usually related to the usage of licensed spectrum)

Usually there is a trade-off among the different constraints. For example, a large coverage

range and/or bandwidth usually requires more energy. The usage of licensed spectrum makes

it easier to satisfy QoS requirements, but usually at a higher cost.

Figure 7-2: Spectrum impact and coverage for connectivity technologies for IoT (source ITU)

P a g e | 159

One of the parameters that causes a higher impact is the communication range (Figure 7-2).

Thus, a typical classification for wireless IoT technologies is in “short range wireless

communications” (or Wireless Personal and Wireless Local Area Networks –WPAN and

WLAN), and in “wide are wireless communications” (Wireless Wide Area Networks or

WWAN).

Table 7-1: Communications stack

APPLICATION LAYER AMQP, CoAP, DDS, MQTT, XMPP, REST, etc.

NETWORK ENCAPSULATION 6LowPAN, Thread

ROUTING CARP, RPL, DSR, AODV, etc.

DATALINK Bluetooth / BLE, Wi-Fi / Wi-Fi HaLow,
LoRaWAN, SigFox, Z-Wave, ZigBee, USB,
LTE/5G

In this chapter we describe different communication technologies which may be used to

implement applications directly (for example, Bluetooth and Zigbee also standardize the

application layer) or to be used as “layer 2” or “datalink” technologies, and to build a complete

communications stack with other higher layer protocols (as shown in Table 7-1:

Communications stack).

7.2 Short range communications

IoT devices are usually small, battery powered and low-cost devices. Thus, the communication

technologies should also be adapted to those restrictions, and initially only low range

communications satisfied them. In fact, originally Wi-Fi modules were too expensive and

power hungry to be used as the communication technology for IoT devices. It required several

years for Wi-Fi to evolve to be embedded in phones (smartphones) and a few more to be part

of cheaper devices whose battery should last.

In order to guarantee the interoperability among devices, it is necessary to use standards.

This way, devices created by different vendors can exchange information. Nevertheless,

many standards emerged just to satisfy a particular need. For example, Bluetooth was

developed originally by Ericsson to provide means to connect mobile phones and their

peripherals (such as headsets or hands-free devices in cars) or other devices such as

P a g e | 160

computers. That is, Bluetooth was designed just as a “cable replacement” for phones. The

protocol was designed and implemented long before IEEE 802.15.1 was created.

7.2.1 Wireless Local Area Networks (Wi-Fi)

Along with cellular technology, Wi-Fi is the best-known connectivity protocol and is present

in almost every home in the world.

It was originally designed to provide connectivity to computers "on the road" in airports,

hotels, Internet cafes, and shopping malls, or to avoid connecting cables at home or the office

(a convenient feature for laptops). In those scenarios, the goal was to provide web browsing,

email and, for business users, access to the office network through Virtual Private Network

(VPN) applications.

Now, Wi-Fi is a technology that is available in many devices: computers, printers, games

consoles, media servers, scanners, etc. Wi-Fi modules can be embedded in almost any type

of device with a processor, ranging from devices as small as a smartphone or as large as a

screen in an auditorium.

Wi-Fi can be used to easily link together IoT devices, as well as connecting them to wireless

access points that in turn connect to cloud-base systems.

7.2.1.1 802.11 standard

Figure 7-3: 802.11 Family of standards

P a g e | 161

Wi-Fi is a term that originally meant “Wireless Fidelity”, somewhat remembering the term

“Hi-Fi” used to describe “High Fidelity” audio devices. Nowadays, it is almost a synonym of

“wireless internet”. Wi-Fi is not really a protocol, but a trademark of the Wi-Fi Alliance, a non-

profit organization that certifies wireless products as interoperable and promotes the

technology. The standard is defined by the IEEE through the IEEE 802.11 specification family

[39]. The first version was published in 1997, but it was modified and extended through the

years, as shown in Figure 7-3, being the main goal to improve standard performance. Most of

the amendments are related to changes in the physical layer. Changes have affected

both modulation and transmission frequency, bringing faster speeds, higher density,

additional frequency bands, and faster throughput to the users; the changes also bring

the adaptation to specific environments such as vehicle communication, or the transmission

over the free TV band.

In addition to these amendments related to the physical layer. The IEEE has published other

amendments related to aspects such as security and authentication (802.11i), quality of

service (802.11e), direct communication and discovery, indoor locations energy saving, etc.

In order to maintain compatibility with legacy devices, new standards include extra headers

and reserve the channel with techniques that make legacy devices understand that the

channel is busy.

Power consumption is still an issue for IoT devices, but this technology is used in many non-

battery powered devices, or to implement gateways to connect IoT devices using other

technologies to the Internet.

7.2.1.2 Architecture

Although the prevalent use of Wi-Fi is for providing wireless connectivity to the Internet, this

technology can be used to provide peer-to-peer connectivity between devices.

This way, Wi-Fi networks can also be used independently of wired networks, by creating a

LAN that can be used as stand-alone network anywhere to link multiple devices (known as

stations or STA) together without having to build or extend wired networks.

P a g e | 162

In this peer-to-peer topology, client devices within a cell communicate directly to each other

when they are in the same transmission range. To reach further, forwarding of data is

required (that is, it would be necessary to create a multi-hop network).

Nodes are more complex since they need to incorporate management, forwarding and

routing functions.

Multiple networks (different IBSS or “Independent Basic Service Set”) are possible by spatial

separation or by using different carrier frequencies.

Ad hoc communications are helpful in public safety and search and rescue scenarios when

emergency teams need to communicate quickly and efficiently in these situations.

Figure 7-4: Wi-Fi infrastructure network architecture [30]

Nevertheless, the most conventional architecture we will usually find for Wi-Fi networks is

the one shown in Figure 7-. In this case, Access Points (APs) are used to bridge traffic between

the wireless connection and a wired backbone. A wireless client computer can connect with

any other wired or wireless device on the network thanks to access points.

A Basic Service Set is made up of linked stations (STA) and an access point (AP) (BSS). Two

separate BSSs are seen in Figure 7-4 and are bound by a distribution grid. A delivery system

links several BSSs to form an Extended Service Set (ESS), which has its own identifier or ESSID.

This is often referred to as the network's tag.

P a g e | 163

Each AP manages communications within its range. Among other, the principal functions

completed by the AP are:

• Medium Access Control functions

• Mobility Management functions

• Authentication functions

Stations may interact with a specific AP. When APs share the same ESS, stations can also roam

between them.

Wi-Fi networks can also be deployed using a mesh architecture, where the distribution system

is also implemented with a Wi-Fi link. By following this approach, it is possible to reduce the

dependence on wired networks, simplifying and reducing the time and cost of the installation

and making it easily expandable. On the other side, this configuration may reduce the

performance (the wireless channel is used also as a backbone network) ad be more complex

to maintain (if a mesh node does not mesh to the rest of the network for some reason, you

cannot access it remotely from the support centre).

In some cases, it might be beneficial to implement a mesh network indoors, but the primary

application for mesh networks is in large outdoors areas.

7.2.1.3 Layers and functions

Figure 7-5: 802.11 protocol architecture [30]

The 802.11 protocol is a member of the IEEE 802.x family of protocols for local area networks

(LANs). This means that the standard specifies how the physical and de medium access control

layer should behave – adapted in this case to the wireless environment- while keeping the

P a g e | 164

same interface at the higher layer as the other standards in the family, to ensure

interoperability. As shown in Figure 7-5, APs are usually connected to a switched Ethernet

network (802.3) which is completely transparent for applications (an application running in a

Wi-Fi station is not aware of the wireless nature of the connection).

Figure 7-6: Detail of 802.11 protocol architecture [30]

The 802.11 standard only covers the physical layer (PHY) and the Medium Access Control layer

(MAC). The standard specifies different functionalities:

• MAC: Provides access mechanisms, fragmentation and encryption.

• MAC Management: Supports the association of a station to the access point,

synchronization, roaming, maintenance of a MAC management Information Base

(MIB) and power management.

• PHY: Provides a clear channel assessment (CCA or carrier sense signal), handles

modulation and encoding/decoding of signals.

• PHY Management: Its main tasks are channel selection, maintenance of the MIB,

• Station Management: Interacts with the other management layers and coordinates

their management functions.

7.2.1.4 Wi-Fi HaLow

Wi-Fi HaLow for IoT

Features Benefits

Sub-1 GHz spectrum operation Long range: approximately 1 Km

Narrow band OFDM channels Penetration through walls and other obstacles

P a g e | 165

Native IP support Supports coin cell battery devices for months or years

Latest Wi-Fi security No need for proprietary hubs or gateways

Figure 7-7: Wi-Fi HaLow main characteristics

Among the new standards, IEEE 802.11ah is especially interesting for the IoT world. It is

marketed under the name Wi-Fi HaLow and is designed to have a better coverage and a lower

consumption than other protocols of the family.

It offers range, data rates, penetration, and low power consumption profiles expected in IoT

use cases, such as industrial automation, logistics and transportation, agriculture, home and

building automation or smart cities.

One of the main differences with the other physical layers is its operation in frequency bands

below 1GHz. The usage of 900 MHz bands helps to obtain extended coverage. It implements

different techniques to reduce power consumption. Other functionalities in the MAC also help

to reduce congestion and increase both capacity and device density.

The MAC extends the amount of time a client computer is required to sleep until the AP

initiates the disassociation in order to extend battery life. This retained status saves resources

by preventing power-sensitive sensors from having to re-authenticate once they have gone

offline. The functionality allows for a limit of five years of inactivity. The idle time would, in

fact, be determined by the implementation and application specifications.

Other features to reduce consumption are Target Wake Time (TWT) and Restricted Access

Window (RAW).

Client devices that plan to sleep for lengthy stretches of time will use TWT to sign a TWT deal

with the AP, which will store all traffic intended for the client before the agreed-upon

activation time. The client computer listens for its beacon and contacts the AP to collect and

send the requisite data after the agreed-upon time has passed.

The number of wakeup times agreed by the customer and the AP can be extremely brief

(microseconds) to extremely long (years). RAW is commonly found in systems with

predictable operation cycles. An AP can assign RAW privileges to a subset of clients, allowing

them to move data while others are forced to sleep, buffering non-urgent data.

P a g e | 166

Client devices have the potential to save energy by freeing up network bandwidth for other

time-critical traffic.

Network designers can minimise channel contention to save system-wide power by

combining TWT and RAW functions.

The coverage area of the BSS can be partitioned into sectors, each one with a subset of

stations. Each section is covered by a set of antennas to reduce medium contention and

interference.

7.2.2 Wireless Personal Area Networks (Bluetooth)

Bluetooth is a wireless networking standard that allows phones, computers, and other

network equipment to communicate over short distances without the use of wires.

It was created as a universal radio interface for ad-hoc wireless communication between

computers and peripherals, as well as mobile devices, PDAs, and mobile phones. It was

originally designed by Ericsson to replace cables in phones for voice and data transmission

(audio cable, cable with the computer to transfer data, etc.). Thus, it was a technology that

had to be embedded in other devices and the cost should be very low (< 1 $).

Also, this use case (cable replacement) didn’t impose a large range for the communications.

It was considered that 10m (the most typical range, although the standard defined also classes

of devices with a range of 100m) was enough. To make the integration in phones and other

battery powered devices required a low power consumption.

As a result, Bluetooth is a Wireless Personal Area Network (WPAN) system that has very

restricted coverage without requiring infrastructure. It's a short-range technology that's built

into a microchip and is always attached (always on).

Bluetooth has a wide range of potential applications, but the most prominent application is

providing a convenient and uncontrolled means of interconnecting electronic equipment.

Throughout the 1990s, most of the wireless interconnection between PDAs, mobile phones

and laptops was done with online infrared technology. By using wireless RF communications,

Bluetooth does not require direct line of sight (SLO) and can support multipoint

communications in addition to the point-to-point communication that was available with

P a g e | 167

infrared. The short-range receiver-emitters that are built into mobile devices to provide

Bluetooth compatibility are designed to operate in the 2.4 GHz unlicensed radio band.

Bluetooth was designed to operate in a range of 10 to 100 meters. By hopping to a different

frequency after sending or receiving a packet, a Bluetooth transceiver can mitigate the impact

of interference from other signals. Bluetooth also supports forward error correction (FEC) and

automatic repeat request (ARQ), which involves computing a CRC for data packets and

retransmitting received packets with errors.

The following is the goals of Bluetooth technology:

• The device should be uniform and operate on a global scale.

• The machine would be able to create contact between two Bluetooth-enabled

devices, regardless of their nature: a PC, a cell phone, car gadgets, and so on.

• Since the radio transmitter must be built into battery-powered equipment, it must use

little electricity.

• The transmitter microchip should be inexpensive.

• It would be a device that is built on a reliable and stable protocol.

It should be possible to use it for both data and audio transmission. Transmission rates should

be around 1 Mbps.

Bluetooth was created to eliminate the need for cables, especially serial cables that linked

various devices. File sharing, listening to music, copying notes, navigation, and making cell

phone calls via Bluetooth technology have also been added to the list of use cases over time.

With the addition of Bluetooth 4, the variety of applications is even larger, including

applications such as IoT, health-related devices such as thermometers, blood pressure

monitors, glucose meters; home automation, home training (remote controls, wireless

keyboards); Smart energy; payment with mobile devices; security; automotive-related

devices such as sensors to measure tire pressure, motion sensors, temperature or pollution

sensors, etc.; sports-related equipment such as pedometers, GPS locators, heart rate

monitors, etc.

P a g e | 168

The Bluetooth devices that we will find today can be divided into three categories: classic

Bluetooth devices (BR/EDR), Bluetooth Low Energy (LE) devices or Bluetooth Smart, and

Bluetooth Smart Ready devices.

Within the classic devices, Bluetooth technology allows wireless communication and

information exchange between devices of different nature that meet the specifications of the

standard. The following are examples of Bluetooth-enabled computers, grouped by category:

• Audio: Stereo headset, hands-free

• Car: integrated systems, hands-free, GPS modules

• Laptops with embedded Bluetooth, Bluetooth USB adapters, and link servers to other

networks are examples of personal computers.

• Peripherals: Wireless keyboards and mice, printers

• Telephony: Mobile phones, smart phones, PDAs

• Video and image: Photo cameras, video cameras, projectors.

The ability to connect several devices and exchange voice and data opens up a plethora of

realistic Bluetooth scenarios and applications.

• Exchange files and synchronized information between personal computers.

• Connecting peripherals.

• Hands-free capability for phone conversations via headsets, car kits, or integrated

systems.

• Proximity marketing by sending advertising.

Authentication is the process of verifying someone's identity. In Universal Second

Factor (U2F) authentication, Bluetooth Smart can be used instead of USB dongles.

Find misplaced devices, such as the remote or to send notifications.

Detect the presence or absence of a device and react appropriately.

P a g e | 169

7.2.2.1 Protocol stack

Figure 7-8: Bluetooth stack

The Bluetooth protocol stack is divided into two sections: a "controller stack" that contains

the timing-critical radio interface, and a "host stack" that handles high-level data. In most

cases, the controller stack is implemented in a low-cost silicon computer with a Bluetooth

radio and a microprocessor (hardware). The host stack is usually deployed as part of an

operating system or as a standalone package that can be installed on top of one (software).

The Host Controller Interface connects the two subsystems (HCI). The Bluetooth controller

can be swapped with limited adaptation using this interface [47].

Physical Layer (PHY). The PHY layer is responsible for transmitting and receiving packets of

information on the physical channel. Bluetooth technology supports three radio versions: the

physical layer that allows high-rate transmissions using IEEE 802.11 (AMP = Alternative

MAC/PHY, available from the Bluetooth High Speed specification), the basic rate & enhanced

data rate (BR/EDR) radios and the Low Energy (LE) radio.

Layer of the baseband. The baseband layer in Bluetooth includes the simple ARQ protocol

which serves two purposes. One of the features is a scheduler that allocates physical channel

time to all organisations that have agreed to an access deal. Negotiating access contracts with

P a g e | 170

these entities is the other feature. An access contract is a promise to provide a certain quality

of service (QoS) in order to offer expected performance to a customer application.

Link controller and Manager Layer. The Link Controller is in charge of encoding and decoding

Bluetooth packets based on the data payload and physical channel, logical transport, and

logical link parameters. The Link Controller is responsible for signalling the flow control,

acceptance, and retransmission request signals using the link control protocol. The

connection manager is responsible for developing, altering, and releasing logical links as well

as updating the specifications for physical links between devices. The Link Manager does this

by using the Link Management Protocol to communicate with the Link Managers in the

remote Bluetooth systems (LMP).

Where necessary, the LM protocol allows for the construction of new logical links and logical

transports between devices, as well as the general regulation of connection and transport

attributes such as allowing encryption on the logical transport, adjusting transmit power on

the physical link, and adjusting QoS settings on a logical link. Other functions of this layer

are authentication of the communication with partners (pairing) and cyphering, QoS

parameters negotiation, latency and speed control, and power control.

Logical Link Control and Adaptation Protocol (L2CAP) Layer. The L2CAP is in charge of

handling the order in which PDU fragments are sent to the baseband and some relative

scheduling between channels to assure that L2CAP channels with QoS compromises are not

denied access to the physical channel because of exhaustion of Bluetooth controller

resources. Optionally, the L2CAP layer can provide a further error detection and relaying to

the L2CAP PDUs.

Host Controller Interface (HCI). HCI is characterized as a collection of commands and events

that the host and controller use to communicate with one another, as well as a data packet

format and flow control rules.

These five levels form the Bluetooth core specification. Above them there are other protocols,

that allows to complete the functionality of the Bluetooth devices. Among them we remark

the following:

P a g e | 171

Service Discovery Protocol (SDP). Using Service Discovery Protocol (SDP), the services

provided by remote devices can be discovered, and their characteristics can also be known.

These services are registered with an SDP server. This server maintains a list of services in the

form of service registers where the SDP client can query these services.

Security Manager Protocol (SMP). The peer-to-peer protocol SMP is used to generate

encryption and identity keys. This protocol is implemented using a set L2CAP channel. The

SMP block is also in charge of generating random addresses and resolving random addresses

with known user identifiers, as well as storing encryption keys and identity keys.

During encryption or pairing procedures, the SMP block collaborates with the controller to

supply the stored keys that are used for encryption and authentication. In LE structures, this

block is used. In the BR/EDR scheme, the Link Manager block in the Controller provides similar

features. On LE platforms, SMP functionality is in the Host to reduce the expense of

implementing LE only Controllers.

Attribute Protocol (ATT). The ATT specifies the client/server protocol for data exchange once

the link has been created. Attributes are grouped into meaningful services using the Generic

Attribute Profile (GATT). ATT is commonly used in LE and BR/EDR implementations.

Generic Attribute Protocol (GATT). GATT provides services that encapsulate part of a device's

behaviour and explain a use case, features, and general behaviours based on GATT

functionality. Its service architecture defines the procedures and formats for services as well

as their functionality, such as discovery, read and write, notification and function indication,

and feature broadcast configuration. Only Bluetooth LE implementations use GATT.

Generic Access Protocol (GAP). In order to define the procedures and functions regarding

Bluetooth device discovery and information exchange, as well as the link management

aspects of connecting to Bluetooth devices, the GAP works together with GATT on Bluetooth

LE implementations. Related to device discovery and connection to devices.

Each vendor may add their own proprietary application protocol layer on top of the Bluetooth

specific protocol layer. As a result, the Bluetooth open standard significantly extends the

range of devices that can take advantage of this wireless technology's capability. Despite the

presence of separate proprietary application protocol stacks, the Bluetooth specification

P a g e | 172

demands that interoperability between devices using different stacks be maintained.

Interoperability is ensured thanks to Bluetooth Profiles.

Profiles describe general behaviours that Bluetooth activated devices use to connect with

other Bluetooth devices and are used to define possible applications. Profiles are used to

determine what kind of data a Bluetooth module transmits and are based on the Bluetooth

format. Hands-free functionality to heart rate monitors, alarms, and other profiles are defined

by the user application [49].

7.2.2.2 Bluetooth Low Energy

Bluetooth version 4.0 implemented Bluetooth Low Energy (BLE). It was designed for

applications where power consumption was crucial (such as battery power devices) and

where small amounts of data (states) were transfer infrequently (such as in sensor

applications). The goal from the start was to create a radio standard with the least amount of

power usage possible, one that was optimized for low cost, low bandwidth, low power, and

low complexity. A series of decisions were made in order to do this:

• Using shorter packets.

o TX peak current is reduced by using short packets.

o RX time is cut in half for short packets.

• Designed for the transmission of small pieces of data (1 Mbps, but not optimized for

data transmission)

• Using less RF channels to improve discovery and connection time

• Simplifying link layer state machine

Technical details

• Data Transfers. Bluetooth Smart (low energy) accepts very fast data packets (between

8 and 27 bytes) at 1 Mbps. To reach very short service cycles, connections use

advanced sniff-sub grouping. The estimated maximum throughput that BLE can have

is 1 Mbps. Owing to a variety of reasons, including bidirectional flow, protocol

overhead, CPU and radio limits, and artificial device restrictions, this restriction has

been reduced:

P a g e | 173

o The SoC may limit the number of packet exchanges per connection event

o The smartphone or tablet (device to which we are sending the data) may also

be busy talking to other devices

Ideally, a maximum data throughput of around 5-10 kbps should be assumed.

• Frequency Hopping is a technique for hopping from one frequency to the next. To

keep interference from other technologies in the 2.4 GHz ISM band to a minimum,

Bluetooth Smart (low energy) uses adaptive frequency hopping, which is similar to all

models of Bluetooth technology. Multipath's advantages include increased budgets

and connection range.

• Host Control. The controller has a lot of intelligence thanks to Bluetooth Smart (low

energy), which helps the host to sleep for longer periods of time and be woken up by

the controller when the host wants to execute an operation. Since the host uses more

power than the transmitter, this makes for the biggest power savings.

• Latency is a term used to describe a period of Bluetooth Smart (low energy) will

establish a link and transmit data in as little as 3 milliseconds. This allows an

application to establish a link and then send authenticated data in milliseconds for a

brief contact burst before disconnecting.

• Range. A Bluetooth Smart (low energy) range of more than 100 meters is possible

thanks to the improved modulation rate.

• BLE is focus on very short-range communication (to save battery lifetime). Typical

operating rates is probably closer to two to five meters.

• Robustness. Both packets in Bluetooth Smart (low energy) use AFH and a solid 24 bites

CRC (larger than in Bluetooth BR/EDR) to ensure optimum interference resistance.

• Strong Security. To ensure good encryption and authentication of data packets, full

AES-128 encryption is used in conjunction with CCM.

• Topology is a term that refers to the study of Each packet for each slave in Bluetooth

Smart (low energy) uses a 32-bit connection address, allowing billions of devices to be

attached. This technology is enhanced for one-to-one connections, while a star

topology allows for one-to-many connections.

• Maximum output power: 10 mW.

P a g e | 174

• The transmitter output power is described by LE as being between 0.01 mW (-20 dBm)

and 10 mW (+10 dBm). The computer will adjust the output power dynamically to

reduce power usage and interaction with other devices.

• LE defines the transmitter output power in the range of 0.01 mW (-20 dBm) to 10 mW

(+10 dBm). The device is able to change the output power dynamically to optimise

power consumption and minimise interference to other equipment.

• Range, Max. Current and Sleep Current are implementation specific issues. Based on

the output power defined, LE support a range of about 30m to 100m.

Table 7-2: Bluetooth LE main technical characteristics

Range ~ 150 meters open field

Output Power ~ 10 mW(10dBm)

Max Current ~ 15 mA

Latency 3 ms

Topology Star

Connections > 2 billion

Modulation GFSK @ 2.4 GHz

Robustness Adaptive Frequency Hopping,24 bit CRC

Security 128bit AES CCM

Sleep current ~ 1μA

Modes Broadcast, Connection, Event Data Models, Reads, Writes

Packet size 8-27 bytes

Bluetooth classic and Bluetooth Low Energy are incompatible with each other. This is why

some devices such as smartphones have chosen to incorporate both types of Bluetooth (Dual

Mode Bluetooth Devices), while others such smart wristbands only incorporate BLE (Single

Mode Bluetooth Device).

P a g e | 175

7.2.2.2.1 Bluetooth Low Energy Architecture

Figure 7-9: Bluetooth Low Energy Protocol Stack

In BLE, the physical layer operates in the ISM band (2.4 GHz spectrum). It's split into 40 radio

frequency channels, each separated by 2 MHz (Figure 7-).

Figure 7-10: Bluetooth LE channels

Primary Advertising Channels refers to three of these channels. Secondary Advertisements

and data transmission during a link are handled by the remaining 37 networks. The

connection layer is in charge of maintaining the radio status and synchronization conditions

that must be met in order to comply with the BLE specification. It's also in charge of hardware-

accelerated operations like CRC, random number generation, and encryption.

The relation layer's operation is represented using a simple state machine with five states.

P a g e | 176

Figure 7-11: Bluetooth LE link layer states

• Standby: When no packets are received or exchanged, this is the normal link layer

condition. This state can be reached by a computer from either of the other nations.

• Advertising state: Sends out advertising packets and will listen for devices that

respond to those packets, then respond accordingly to those devices. When the

connection initiates ads, it is possible to reach this state from the standby state. An

Advertiser is a connection layer that is in this state.

• Scanning state: Listens for packets from the Advertiser and can request additional

information from the Advertiser. When the connection layer wishes to start scanning,

this state can be entered from the standby state. Scanner is the name of a relation

layer in this state.

• Initiating state: The link layer is in the initiating state when it listens for packets from

the Advertiser and responds by initiating a connection. When the Scanner initiates a

communication with the advertiser, it will reach this state from the standby state. The

Initiator is a connection layer that is in this state.

• Connection state: The computer is attached to another device, and two functions have

been assigned to it: master and slave. This state can be accessed from either the

initiation or the advertising states. The computer assumes the role of Master when

entering from the initiation state. The computer behaves as a Slave when it enters

from the advertisement state.

A connection layer in the Slave role will only connect with one system in the Master role,

implying that the LE does not accept sparse network situations like the BR/EDR. The following

functions are specified by the connection layer:

P a g e | 177

• Advertisement (a device sending advertising packets)

• Scanning (a device scanning for advertising packets)

• Educator (a device that initiates a connection and manages it later)

• Slave (a computer that acknowledges a communication request and keeps time with

the master).

When there is no active connection, the roles are grouped into (announcer and scanner) while

when there is a connection they are grouped into (master and slave).

Advertising and Scanning

There is just one packet format and two kinds of packets in Bluetooth Low Energy

(advertisement and data packets). This makes the protocol stack's deployment easier.

Advertisement packets are used to broadcast data for programs that don't need the overhead

of a complete connection establishment, as well as to discover and link to slaves.

Each advertisement packet will contain up to 31 bytes of advertising data as well as simple

header information. The advertiser's interval determines the rate at which these packets are

delivered (between 20 ms and 10.24s). They're delivered at a predetermined pace

determined by the advertiser's interval (between 20 ms and 10.24s). The shorter the interval,

the more often commercial packets are transmitted, increasing the likelihood that these

packets will be handled by a scanner. An increase in the number of transmitted packets leads

to an increase in energy demand.

There are two categories of scanning procedures defined in the specification: passive

scanning and active scanning. The scanner simply listens for ads packets while passive

scanning. The advertiser is completely unaware that a scanner has received one or more

packets. After processing an advertisement packet, the scanner sends a scan request packet

to the advertiser, who receives it and replies with a scan response packet. This extra packet

effectively doubles the amount of data that the advertiser will send to the scanner. The

scanner is unable to transmit any consumer details to the advertiser as a result of this.

P a g e | 178

Figure 7-12: Bluetooth LE link layer advertising

Connecting

To make a connection, a master begins by looking for advertisers that are willing to entertain

connection requests. The advertiser is either filtered depending on the BT address or the

advertisement data itself. The master sends a communication request packet to the slave

after detecting a fitting advertiser slave and creates a link. The frequency hop increment is

included in the link request packet, and it determines the hop series that the master and slave

will obey over the connection's lifetime. Another number of main variables shared by the

master during the creation of a link is the connection parameters:

• The time before the start of two consecutive connection events is known as the

connection event interval (7.5 ms and 4s).

• The number of link events that a slave may opt to miss without causing a

disconnection is referred to as slave latency. If the slave latency is set to ten, for

example, the slave must listen for every tenth communication occurrence. If it's set to

0, the slave will have to listen for each and every communication occurrence.

The maximal interval between two legitimate data packets received until the link is deemed

lost is known as the connection supervision timeout. The communication is deemed broken

and no further packets are transmitted if a packet is not sent during the monitoring timeout.

The host is notified that the link has been lost. This timeout is used by both the master and

the slave.

P a g e | 179

Figure 7-13: Bluetooth LE link layer connection

Topology

The possible topologies for the LE are shown in Figure 7-. An Advertiser sends advertisement

packets over the physical advertising channel on the left side of the figure. Two scanners listen

to these advertisement packets and may either ask the Advertiser for more details or submit

a connection request over the advertising channel.

A piconet is depicted on the right side of the figure, with a Master attached to three slaves.

The physical data channels are used to transmit data between the Master and the Slaves. The

Master works like a printer, scanning the advertisement platform for packets from

advertisers.

Figure 7-14: Bluetooth LE Topology

P a g e | 180

Bluetooth LE is based on the previously described Attribute Protocol (ATT) and Generic

Attribute Profile (GATT).

ATT. The attribute protocol is a process for finding, interpreting, and writing the attributes of

a remote computer. Is a stateless client/server protocol based on the following attributes

provided by devices:

• The client discovers attributes, reads and writes attributes, requests data to server

• The server contains attributes

Each attribute contains the following information:

• Handle: identifier to access the attribute

• The form and quality of the data in the value field is determined by the UUID.

• Permissions: Permissions include readable, writable, notify, coding, authentication,

permission, and more. Describes the operations that can be performed on this

attribute.

• Value. Represents the value of the attribute.

GAT: Built on top of the Attribute Protocol (ATT), GAT adds a hierarchy and a data abstraction

model. Establishes how to share both profile and account data over a BLE network in great

detail. It's a client/server protocol as well:

• A client sends requests to a server, and the server responds.

o First: Service discovery

o Reads and writes attributes found in the server

o Receives server-initiated updates

• The server is in charge of storing and rendering user data, which is structured in

attributes, accessible to the client.

7.2.2.3 Bluetooth Mesh

Packet forwarding in a Bluetooth mesh network is based on the managed flooding

communication model. In this way, a message injected into the mesh network could be

forwarded to several relay nodes at once. This approach offers a high flexibility in the

P a g e | 181

deployment and operation of the network, but as a counterpart it generates a high

congestion, which could lead to packet loss.

One of the positive aspects of Bluetooth is that it allows devices to establish multiple

connections. It is possible to establish a point-to-point connection with a heart rate monitor

through which data can be transferred. It is also possible to establish a point-to-point

connection with an activity monitor. On the other hand, a mesh network has a many-to-many

topology. Each device can communicate with all other devices in the mesh via messages, and

devices can relay messages to other devices. In this way the end-to-end communication range

can be extended beyond the radio range of each individual node.

When a node queries the status of other nodes it sends a message of an appropriate type. To

inform other nodes of its status, it sends a message. Communication in the mesh network is

"message-oriented". Many types of messages are defined, each with its own unique opcode.

We can divide messages into two categories: acknowledged and unacknowledged.

Bluetooth Mesh networks were created because mesh topologies offer the best option to

satisfy several increasingly common requirements:

• Very large coverage areas

• The ability to monitor and control a large number of devices

• Low power consumption, and optimized consumption

• Efficient use of radio resources, leading to greater scalability

• Compatibility with current terminals (smartphones, tablets, PCs)

• Industry standards and high safety levels set by governments

The mesh network operation defined by this specification is designed to:

• Enable messages to be sent from one element to one or more elements;

• Allow messages to be relayed via other nodes to extend the range of communication;

• Secure messages against known security attacks, including eavesdropping attacks,

man-in-the-middle attacks, replay attacks, trash-can attacks, brute-force key attacks,

and possible additional security attacks not documented here;

• Work on existing devices in the market today;

• Deliver messages in a timely manner;

P a g e | 182

• continue to work when one or more devices are moved or stop operating; and

• have built-in forward compatibility to support future versions of the Mesh Profile

specification.

Bluetooth mesh features:

• The publish/subscribe model is as follows: The publish/subscribe model is used to

describe data sharing within the mesh network. Nodes that generate messages send

them to a specific address, and nodes that want to receive them subscribe to that

address. This enables address assignment and party casting to be done in a variety of

ways.

• Two-layer security: Messages may be authenticated and encrypted using two different

forms of encryption keys. The network layer key ensures that all communication

within a mesh network is safe. The application key is used to ensure that application

data sent between intended devices is kept private and authenticated. The application

key enables the use of intermediary devices to relay data, allowing messages to be

authenticated for retransmission while preventing intermediate devices from reading

or changing the application data.

• Flooding is one of the simplest and most straightforward methods of propagating

messages in a network via broadcast. A message retransmitted by one device can be

received by multiple retransmitters that, in turn, retransmit it. The Bluetooth mesh

contains rules to restrict devices from retransmitting messages they have seen and to

avoid messages being retransmitted over many hops.

• If devices need low-power support they can be associated with an always-on device

where messages are stored and transmitted on their behalf. This concept is known as

friendship. Friendship is defined as the special relationship between a low-power node

and a neighbouring friendly node. The low-power node is the first to establish

friendship. The friendly node takes actions to help reduce the energy consumption of

the low energy node. Incoming messages are cached and directed to the low-power

node. The friend node delivers security updates to the low-power node.

P a g e | 183

The Bluetooth Mesh specified advertisement bearer may not be supported natively by certain

Bluetooth devices, such as smartphones. The Bluetooth Mesh profile defines a proxy protocol

for mesh messages to be shared between devices using legacy Bluetooth connections.

7.2.3 Personal Area Networks (Zigbee)

ZigBee is a Wireless communication standard designed by the ZigBee Alliance. It was originally

created by Ember Corporation (later acquired by Silicon Labs) to build low-power and low-

data-rate WPANs that could incorporate more nodes than Bluetooth [44]. It was designed

thinking on the simplicity of the implementation and in low power consumption, targeting

applications requiring secure communications, low data transmission rates and that

maximizes batteries lifetime. Now, it is controlled by the ZigBee Alliance, a consortium of

software, hardware and service companies such as: Motorola, Philips, Mitsubishi, Invensys or

Telefonica.

This technology targeted industrial and residential applications, especially for sensors and

control devices and for scenarios where power consumption and/or implementation costs

are critical. Zigbee is designed to optimize low bit-rate applications and low duty cycles.

The ZigBee specification includes a protocol stack divided in two principal layers. The lower

layers are tied closely to the IEEE 802.15.4 standard, which offers a wide range of physical

layer specifications, but only a subset is standardized under the ZigBee specification.

Nevertheless, sensor and controller applications needed a meshed network and standard

syntax for application level messages. Thus, ZigBee Alliance created the standards for the

missing layers, which would be needed to enable the deployment of multi-vendor networks,

relying on the radio layers of the IEEE 802.15.4 standard. The Network layer (NWK) manages

routing tasks and the maintenance of network nodes, and the Application Support Sublayer

(APS) establishes an interface between network layer and ZigBee Device Objects (defined by

the standard or the manufacture.

ZigBee has been designed to have the following features and functions:

• Ease of implementation (Using DSS allows analog circuitry to be very simple).

• Low power consumption: device batteries are expected to have a life span of several

months to several years.

P a g e | 184

• The power control is simple. There are only two possible states: active (transmitting

or receiving) and asleep. This allows applications to focus on the application itself

rather than on what is the optimum power mode for each aspect of its operation.

• Low cost (both devices and their installation and maintenance).

• High density of nodes in ZigBee networks Both the physical level and the MAC level

allow a high number of nodes per network, which is critical in sensor networks. The

network can grow spatially, without the need to use higher power transmitters.

• Simple protocol, global in scope (the 868 MHz band is used in Europe, 915 in N

America, Australia, etc., and the 2.4 GHz band is accepted in most countries as a global

band).

• Small devices.

• Short range (for each node).

• 50 m typical (between 5 and 500 m depending on the environment).

• Flexibility in network configuration (supports multiple topologies without adding

complexity).

ZigBee is especially suitable for situations where energy consumption and/or implementation

costs are critical. Therefore, it is suitable for home automation applications where it is not

desired or possible to create a wired communication network. It is also suitable for those

cases where the controlled elements or sensors are mobile. It is intended to be used in general

purpose applications with self-organizing and low-cost features (mesh networks, in

particular). It can be used for industrial control, embedded sensors, medical data collection,

smoke or intruder detection or home automation. The network as a whole will use a very

small amount of energy so that each individual device can have an autonomy of up to 5 years

before needing a replacement in its power system.

IEEE 802.15.4 has been designed to be useful for a number of applications, including industrial

control and monitoring; public safety, including listening, detection and location of disasters;

smart bands and tags; in-car control, e.g., tire pressure monitoring. Precision agriculture,

control of the level of pesticides, herbicides, soil moisture (sprinkler irrigation systems, using

just the right amount of water to keep plants green), pH levels; fleet control, reporting on the

state of vehicle maintenance, tire conditions, mileage. However, one of the main

P a g e | 185

opportunities of the technology can be found in domotic applications, building automation

and network interconnection.

Inside the home, different sectors could be considered: connection of peripherals (wireless

mice, keyboards, joysticks, PDAS, games); consumer electronics such as remote controls,

televisions, CDs, VCRs, and the possibility of controlling all equipment with a single universal

remote control; home automation, ventilation and air conditioning, heating, security, lighting

and the control of objects such as curtains, doors, windows and locks; health control, medical

monitoring of elderly people living alone and warning medical staff of changes that could

mean health problems; toys and interactive games. The transmission rate required for this

type of application is expected to be a maximum of 115.2 kbps for some peripherals, and less

than 10 kbps for home automation and consumer electronics applications. Similarly, the

maximum acceptable latency is expected to be 15 ms for peripherals up to 100 ms or even

higher for home automation applications.

7.2.3.1 Protocol stack: PHY, NET, Application layers

Figure 7-15: ZigBee stack (source: Xbee)

As stated before, the ZigBee protocol stack (Figure 7-) is built upon the physical and MAC

layers defined by IEEE 802.15.4.

The physical layer distinguishes three frequency bands: the 2.4 GHz ISM band, the 915MHz

ISM band, and the 868MHz Short Range Device band (SRD).

P a g e | 186

The various features of the implementation for various frequencies may be used to

accomplish various objectives. The lower rate used at 868/915 MHz PHY frequencies, for

example, can be converted into greater sensitivity and a wider coverage area, reducing the

number of nodes needed to reach a given physical area, whereas the higher limit of the 2.4

GHz PHY can be used to achieve higher throughput, lower latency, or lower duty cycle.

The locations where ZigBee is deployed may contain multiple types of wireless networks

competing for the same frequency bands, so it is necessary to have mechanisms to relocate

within the spectrum. ZigBee offers this possibility through the cross-layer cooperation

between PHY, MAC and NWK. PHY layers implement receiver energy detection, link quality

indication, and channel switching, which enable channel assessment and frequency agility.

The MAC layer includes a scan function that steps through the list of supported channels in

search of a beacon, and finally the NWK layers establishes the initial operation channel and

changes it in response to a breakdown or prolonged failure.

Regarding coverage, it will depend on the transmitted power. Each device shall be capable of

transmitting at least 1 mW, covering a 10–20 m range. With good sensitivity and a moderate

increase in transmit power, a star network topology can provide complete coverage for the

desired area. Nevertheless, for applications allowing more latency, mesh network topologies

provide an alternative to cover larger scenarios.

The range depends also on the frequency used. For example, the typical values for the 2,4

GHz band are 10 m indoor and 200 m outdoor, and for 868/915 MHz bands 30 m indoor and

up to 1000 m outdoor. Also, as the devices operate in the ISM band, they must be able to

accept interferences caused by other devices.

In ZigBee we can create different topologies by using the “star” and “Peer-to-Per”

configurations. With the “Peer-to-Peer” configuration, we can build mesh networks.

Not all the nodes share the same functionality. They can be classified according to their

capabilities:

• Reduced Function Device (RFD): Limited devices suitable only for simple applications

(light switches and infrared sensors) that do not need to send or received large

amounts of data. They have a reduced stack size with limited functions so they can

P a g e | 187

only be “leaves” in a star topology. They cannot work as network coordinator, and talk

only to Full Function Devices (FFD).

• Full Function Devices (FFD): Are capable of being network coordinator, link

coordinator or a simple communication node. They can talk to any other device, route

messages and complete discovery procedures. They implement a full stack, so need

more power

• ZigBee Network Coordinator (ZC): Are the nodes that set up a network (selecting the

channel and PAN ID), transmit network beacons, manage network nodes, store

network node information. They distribute addresses, allowing routers and end

devices to join the network and assist in routing data. For children that are sleeping,

they buffer data packets. Manages the other network functions, so it cannot sleep and

must be powered on at all times.

The NWK layer satisfies different functions. It is responsible for starting or creating a network

(usually the coordinator), allowing devices to join or leave a network, assign addresses to

devices, implement synchronization using beacons or by polling, implement security,

implement routing protocols.

The Application Support Sublayer (APS) also implements high level functions that simplify the

operation of the final applications, such as the generation of the application level PDU (APDU)

by adding the appropriate protocol overhead, binding (devices can be bound, and then this

layer is able to transfer a message from one to other), group address filtering (the ability to

filter group-addressed messages based on endpoint group membership), reliable transport

(increases the reliability of transactions above that available from the NWK), duplicate

rejection (messages offered for transmission will not be received more than once),

fragmentation (enables segmentation and reassembly of messages longer than the payload

of a single NWK layer frame), AIB (APS Information Base) management (manages the

information about bounded devices), security (the ability to set up authentic relationships

with other devices through the use of secure keys), and group management (the ability to

declare a single address shared by multiple devices, to add devices to the group, and to

remove devices from the group).

P a g e | 188

7.2.3.2 ZigBee profiles

ZigBee is a protocol that standardizes the application layer, allowing devices from different

manufacturers to participate in the implementation of an application. Thus, profiles are the

key element for the communication between ZigBee devices.

Profiles define the offered services and describe a common language for exchanging data:

type of messages, available commands and their responses, etc. This way, they allow

communication between separated devices to build a distributed application, guaranteeing

device interoperability even across different manufactures. For example, tasks for joining the

network or discovering devices and services are supported by ZigBee Device Objects (ZDO).

One example is home automation. This ZigBee profile allows a number of computer types to

exchange control messages, allowing for the creation of a wireless home automation

program. These systems are designed to send and receive known messages in order to affect

power, such as turning on or off a lamp, reporting a light sensor calculation to a lighting

controller, or sending a warning message if an occupancy sensor detects motion [46].

7.3 Wide Area Networks: Cellular connectivity

In previous sections we have studied short range communication protocols which perfectly

fit many IoT applications. Nevertheless, the IoT devices using Bluetooth, ZigBee or even Wi-

Fi require a local gateway that provides connectivity to a backend through the Internet.

This approach is not always valid. For example, if we want to install sensors for metering

(utilities such as water, gas, etc.), detect fires in forests or measure other parameters in areas

without a pre-existing communications infrastructure, we will require a mechanism or a

technology to reach large areas.

P a g e | 189

Figure 7-16: IoT technologies. Range vs data rates.

There are different alternatives, for example:

• Create a network covering a large area with a multi-hop network over links created

with short range technologies (such as ZigBee, Bluetooth LE, Wi-Fi HaLow, Z-Wave,

ANT+, ISA 100, WirelessHart, etc.).

• Use traditional cellular technologies, such as GSM, GPRS, 3G, LTE, etc.

• Use the new cellular protocols specifically designed for IoT: LTE-MTC (LTE-M), LTE-

eMTC, NB-CIoT, NB-LTE

• Use the new Low Power Wide Area Network (LPWAN) technologies: Sigfox, LoRaWAN,

NWAve (Weighless-N), Platanus (Weighless-P), Weighless-W, Ingenu (OnRamp), etc.

Figure 7-17: Comparison between IoT technologies for wide area coverage

P a g e | 190

A multi-hop network with short range technologies will be hard to configure and maintain,

and it will require placing the nodes at a distance that makes it possible the communication.

This approach will be limited to very specific situations.

Traditional cellular networks are being used nowadays to connect IoT devices, but that

technology was not designed for scalability or low power. Also, the costs are usually high.

Then, for those scenarios, new cellular protocols designed for IoT are the best choice. LPWAN

is a relatively recent category of wireless communications technologies designed to support

IoT deployments that require strong coverage over large areas even when devices are

underground or deep within buildings. They also provide great power efficiency, allowing

devices to run on batteries for 10 years or more. LPWAN protocols are also designed to be

massive scalable, making it possible the connection of millions of devices at once in a single

deployment, allowing each cell or base station the connection of more than 10k devices. Also,

as any other system for IoT, the communications hardware is cheap (< 10 $). In return, LPWAN

usually provides a low bandwidth (few bytes of data to be transmitted per device per day).

7.3.1 Sigfox

Sigfox was the first LPWAN technology launched to the market. It was created by Sigfox,

founded in 2009 which developed the technology and also provides a communication service

for IoT.

Sigfox employs an Ultra Narrow Band (UNB) modulation. The information regarding the

physical layer was opened to the public in 2019. Nevertheless, the there is no public

information available regarding the network layer protocols.

Early versions of the technology only allowed unidirectional communication, from the device

to the aggregator, but now bi-directional communication is supported. Every base station can

manage up to one million connected objects, with a coverage area of 30-50 km in rural areas

and 3-10 km in urban areas.

Sigfox uses a BPSK modulation for uplink (differential binary phase shift keying or D-BPSK),

with Ultra Narrow-Band (UNB) technology, which provides benefits such as improved

scalability, reduced interference, less power, etc. For downlink, it uses a GFSK modulation.

The physical layer is designed to operate in license-free ISM bands, at 868 and 900 MHz.

P a g e | 191

Usually, devices are configured to transmit information to a server (data collection), but some

devices are also able to receive downlink messages, which can transport up to 8 bytes data to

the device.

Users can purchase connectivity. In low volumes, the cost is approximately 16€/year per

device, providing up to 140 messages/day (12 bytes payload).

According to Sigfox, the typical life of a message is as follows:

1. The device "wakes up" at most 6 times per hour. During that awakening, its sensor(s)

activate and retrieve information. Therefore...

2. The device has something to report. It creates a message. Sigfox allows for messages

with a 12-byte payload (at most), itself wrapped into a 26-byte data frame (at most).

3. To send its message, the device broadcasts radio signals. To do so, it transfers a small

amount of energy on a random frequency, with no protocol overhead. The device sends

every frame three times and on three random frequencies: this is "frequency hopping".

It is one of Sigfox's security feature: it protects radio frames from sniffing because it is

impossible to know where the device is going to send in the operation band. It also

enables broadcasting diversity and transmission resilience.

4. These signals get to the base stations listening to the Sigfox frequency. Sigfox base

stations listen to the whole radio spectrum, and interpret all UNB signals they receive

on the legal frequencies. The signals from Sigfox devices are therefore detected on-

the-fly.

5. The base station retrieves the message from the signal and checks that it is valid. Base

stations demodulate the received signals in order to assert that there is indeed a

message within.

6. The base station uploads the message to the Sigfox Cloud.

7. The Sigfox Cloud receives the messages and authenticates the sending object. Once it

has asserted the sender's ID, Sigfox Cloud knows the action to perform with the

message.

P a g e | 192

8. The Sigfox Cloud sends the message to the device maker's server. Event callbacks

created on the Sigfox Backend create a "push" procedure, which makes that Sigfox

Cloud only contacts the remote server when there is a message to transmit. That

remote server can of course be an integration with a major Cloud solution: Amazon

AWS, Microsoft Azure, theThings.io, etc.

9. Finally, the data is displayed on the customer platform.

Because of the operation mode, according to the Libelium company, Sigfox is recommended

for long-range device communications in cities where their base stations are deployed, but it

is not recommended for some use cases. For example, when it is necessary to send one frame

every few minutes, or if it is necessary to exceed the 140 packets per day limit, it is necessary

to transmit a large amount of information (the maximum payload is 12 bytes) or bi-directional

communications are necessary.

Sigfox is not recommended also for real-time streaming, because transmissions are not

performed in real time as there is a minimum delay for packet arrival

7.3.2 LoRa

LoRa is a physical layer technology created by Semtech, the company that builds the physical

devices and that owns the proprietary radiofrequency technology and intellectual property

rights. Thus, Semtech built its business following the opposite approach to Sigfox. While Sigfox

opens its physical layer to third party manufacturers and controls the network to offer the

connectivity service, Semtech keeps ownership of the physical layer and allows third parties

to deploy networks using the LoRaWAN standard.

The network's communication protocol and device architecture are described by LoRaWAN

(LoRa is the physical layer that enables the long-range communication link).

P a g e | 193

Figure 7-4: Chirp modulation

LoRa uses its own spread spectrum modulation scheme (LoRa Spread Spectrum), variant of

Chirp Spread Spectrum (CSS). LoRa is purely a physical layer protocol (the higher layers are

defined by LoRaWAN), implemented in ISM bands: 868 (Europe), 915 (USA) and 433 MHz

(Asia). It is designed for long range communications (up to 22 Km in rural areas or 2 to 5 Km

in urban environments). One of the requirements is also the low power consumption, so it

keeps low data rates (0.3 to 50 kbps for uplink) and only replies to previous transmissions in

downlink (the sending node remains listening for a while before going to sleep).

Figure 7-5: LoRa MAC uplink timing diagram for confirmed data message [41]

The MAC layer is defined by the LoRa Alliance and openly published as a part of LoRaWAN. It

is based on ALOHA. The transmission slot is scheduled by the end-device depending on its

P a g e | 194

needs, adding a random time to avoid interferences. Figure 7-5 shows a timing diagram where

the end-device first transmits a confirmed data frame containing the Data0 payload at an

arbitrary instant and on an arbitrary channel. The network receives the frame and generates

a downlink frame with the ACK exactly after RECEIVE_DELAY1 seconds. In this example the

ACK is not received, so the information has to be retransmitted.

A system address (DevAddr), an application identifier (AppEUI), a network session key

(NwkSKey), and an application session key are all stored on each computer (AppSKey). The

keys are used to encrypt and decrypt the payload area of application-specific data messages,

as well as to validate the integrity of messages.

There are three types of nodes:

• Bi-directional end-devices (Class A): This is the most popular operation model. In the

very least, all systems must be Class A. They make it possible to communicate in both

directions. Two brief downlink receive windows are opened after a system sends data

over the uplink channel. In the other time, downlink messages from the cloud would

have to wait for the next planned uplink.

• Bidirectional end-devices with scheduled receive slots (Class B): This type of devices

allows for a greater number of receive slots. They receive a coordinated Beacon from

the gateway, which helps the server to know when a Class B device will be listening,

and they open extra receive windows at predetermined times. This class will be used

to create actuators that must be activated from the server.

• Bi-directional end-devices with maximal receive slots (Class C): This category of

devices have a higher consumption because they are expected to have nearly

continuously open receive windows. This way, there is no latency for downlink

communication, making this operation suitable for actuations with strict time

constrains, such as main power actuators, automotion, control, etc.

P a g e | 195

Figure 7-6: LoRa WAN architecture and communication stack (source: https://lora-alliance.org)

LoRaWAN not only defines a MAC layer. The protocol defines a complete networking

protocol, including the topology and the details for the technical implementation (Figure 7-6).

LoRaWAN compatible devices are connected using the LoRa physical layer to one or more

Gateways, following a star-of-stars topology. Gateways are connected to an IP network and

relay messages to a central network server.

While gateways must listen to all frequencies, communication between end-devices and

gateways is spread out on various frequency channels and data rates (the frequencies and

data rates depend on the distance and length of the transmissions). The end-devices are not

directly linked to a specific gateway.

User applications are running in the cloud, directly in the network server or in any other

location using an additional protocol/API (e.g., MQTT). LoRaWAN also includes mechanisms

to implement roaming between networks, updates over the air (OTA), or to maintain QoS.

LoRa can be deployed as a public network (following an approach similar to Sigfox) or as a

private network. Anyone can buy a LoRa gateway and connect devices to implement an

application.

Furthermore, the LoRa physical layer can be used to implement other communication stacks

(different to LoRaWAN). LoRa can be us as the physical layer, and implement any protocol

P a g e | 196

over it, ranging from custom protocols, implementations of existing protocols or solutions

(such as 802.15.4 MAC or 6LoWPAN). For example, Simphony-Link uses LoRa as the physical

link, but uses the IEEE 802.15.4 MAC supporting bidirectional communications and low

latency. Virtual Extension VEMesh creates a mesh topology with multihop bidirectional

communications.

7.3.3 NB-IoT

Narrowband IoT (NB-IoT) is an open 3GPP standard based on LTE defined in the 3GPP Release

13 Release 13 in June 2016. It allows a flexible and quick deployment, because it is compatible

with existing network infrastructure by using a small portion of the available spectrum in LTE.

Most eNB (LTE base stations) can be upgraded to support NB-IoT.

Although NB-IoT is a modern radio protocol (only devices programmed for it would be able

to connect), it heavily borrows from LTE technologies, including numerologies, downlink

orthogonal frequency-division multiple access (OFDMA), uplink single-carrier frequency-

division multiple access (SC-FDMA), channel coding, rate matching, interleaving, and so on.

[42].

Figure 7-21: NB-IoT deployment alternatives

Different alternatives may be used to deploy NB-IoT by an operator in his licensed LTE band

(Figure 7-). It may be deployed as a standalone carrier or within the LTE spectrum. In this case,

it can be deployed inside an LTE carrier or in the guard band. In any case, IoT devices would

be not aware of the option selected.

NB-IoT takes advantage of the modern cellular communication technologies by adding a

narrowband signal that can be used to communicate low powered devices. Features such as

the multiple access and the modulation schemes from LTE are adapted. For example, for

uplink two new channels using SC-FDMA were standardized: Narrowband physical random

P a g e | 197

access channel (nprach) and narrowband physical uplink shared channel (npUSCH). For

downlink, also six new channels were created: Narrowband primary synchronization signal

(NPSS), Narrowband secondary synchronization signal (NSSS), Narrowband physical

broadcast channel (NPBCH), Narrowband reference signal (NRS), Narrowband physical

downlink control channel (NPDCCH), Narrowband physical downlink shared channel

(NPDSCH)

NB-IoT is designed to build low complexity devices. For example, it allows only half-duplex

frequency-division duplexing operation. The coverage objective is achieved with 20 or 23 dBm

power amplifier, making it possible to use an integrated power amplifier in the UE.

7.4 Wireless Sensor Networks

7.4.1 Introduction

A Wireless Sensor Network (WSN) is a self-configuring network of small sensor nodes that

communicate using radio signals and are used to feel the physical environment in large

numbers [43].

The concept of WSN was popular before IoT, that is, before sensors could be directly

connected to the Internet to provide services through a backend. Nevertheless, we can say

that WSNs are a subset of the IoT. WSNs are formed by a large collection of sensors that are

not directly connected to the Internet, so they form a network for distributing the

information.

We can classify devices participating in WSNs in three categories:

• Sources of data: Responsible of measuring data and report them “somewhere”. This

class of devices are typically equipped with different kinds of actual sensors.

• Sinks of data: Interested in receiving data from the WSN. For example, a smartphone

or a gateway that transmits the information to a backend.

• Actuators: Use data to control a computer, which is typically also a drain.

This kind of networks have sensing and/or actuation faculties, in combination with

computation and communication abilities that can be used to build their own infrastructure,

P a g e | 198

they can be built when there is no infrastructure available (e.g., disaster zones), building an

infrastructure is too expensive or there is no time to build an infrastructure (e.g., military

operations).

• Disaster recovery: This is one of the most often mentioned application for WSNs. A

typical scenario is wildfire detection where sensor nodes, with thermometers or other

devices to detect fire and a location mechanism (GPS or a relative positioning system),

are deployed in a forest, for example from a plane, and collectively produce a map to

determine the area affected from a wildfire, so firefighters get that information in real

time.

• Biodiversity mapping: WSNs can be used to control the environment (sensing

pollutants, erosion) or observe wildlife.

• Intelligent buildings (or bridges): WSNs can be deployed to improve the efficiency of

buildings by controlling humidity, ventilation, or air conditioning (HVAC). In this area,

they can also be used for measuring room occupancy, temperature, air flow, etc. In

seismic active areas, they can also be used to monitor mechanical stress after

earthquakes.

• Facility management: For large facilities with several buildings WSNs can be used for

different purposes, ranging from intrusion detection into facilities or access control,

detecting leakages in chemical plants, etc.

• Machine surveillance and preventive maintenance: Sensor nodes to can be attached

in places hard to connect with a wire to detect abnormal operation patterns or

unexpected stops.

• Precision agriculture: WSNs can be used to analyze the soil and apply

fertilizer/pesticides/irrigation only where needed.

• Medicine and health care: Postoperative and intensive care, or long-term surveillance

of chronically ill patients or the elderly.

• Logistics: Tracking goods with IoT devices, knowing the state of the good

(temperature, impacts, etc.).

P a g e | 199

• Telematics: Sensors can be embedded in the streets or roadsides to gather

information about traffic conditions (number of vehicles, speed, etc.) creating an

intelligent roadside or use cars as the sensor nodes.

This type of sensor networks has to find mechanisms to create a network that is able to

support the specific quality of service, lifetime, and maintainability requirements specific of

the particular application. Usually the communication range is small, so it is necessary to

create a multi-hop network, but this kind of networks have their own challenges. First of all,

there is no central entity to organize/orchestrate the whole network, so participants must

organize themselves and implement decentralized MAC mechanisms and distributed routing

protocols. If the participants are mobile, then it is necessary to implement specific

mechanisms (route repairing, location, etc.) in what is called a Mobile Ad-hoc NETwork

(MANET).

7.4.1.1 Multi-hop networks

The term “ad-hoc network” means that the network was setup for a specific purpose without

a previous planning. In this case, the self-configuration of the network is essential to make

everything work without manual intervention. Mobility is another ingredient in MANETs.

WSNs and MANETs share the same restrictions, but MANETs have additional challenges. For

example, the mobility changes multihop routes in the network, and routing protocols have to

handle such changes, but protocols have to be also energy efficient for battery powered

nodes.

7.4.1.2 Requirements for WSN

The applications supported by WSNs and MANETS usually share a set of requirements:

○ Data-centric networks: It is not (really) relevant which node provides the information,

but the information itself. Thus, it is possible to measure the information from

different nodes and forward it to the sink. If the information from one of the nodes

arrives, it will be enough.

○ Traditional quality of service standards for WSNs, such as bounded delay or minimum

bandwidth, are obsolete. In some cases, simply delivering a packet is sufficient; in

P a g e | 200

others, the time it takes to respond after an incident is observed is important, and so

on.

○ Fault tolerance: Nodes may run out of energy or even get destroyed, so the network

has to be robust against node failure.

○ Lifetime: In many situation nodes will be powered by batteries that will not be

replaced after being emptied, so it will be necessary for the network to operate at

least for a mission time. Nevertheless, what is important is the lifetime of the network,

more than the lifetime of each particular node.

○ Scalability: Since a WSN can have a huge number of nodes, the architecture and

protocols must be scalable.

○ Wide range of densities: The number of nodes per unit area may vary, even over time.

The protocols should support vast or small number of nodes per unit area.

○ Programmability: Nodes may have to be reprogrammed with new versions or

upgrading their functionality.

○ Maintainability: The network must adapt to changes, so it should include self-

monitoring and mechanisms that adapt the operation of the WSN to the actual state,

including the appearance of new resources.

7.4.2 6LoWPAN

WSN (Wireless Sensor Networks) require (high level) standard protocols to interoperate.

Thus, the IETF has been working in different working groups (WGs) to develop standards for

WSNs, being the most known 6LowPAN [46].

IPv6 over Low-power Wireless Personal Area Networks is abbreviated as 6LoWPAN. It

specifies the requirements for IPv6 communication over IEEE 802.15.4 wireless technology.

IPv6 over Low Power Wireless Personal Networks, or 6LoWPAN, is an acronym that stands for

IPv6 connectivity over IEEE 802.15.4 wireless communication technologies.

P a g e | 201

IPv6 over Low-power Wireless Personal Area Networks is abbreviated to 6LoWPAN. It

specifies the requirements for IPv6 connectivity over IEEE 802.15.4 wireless technology.

The IPv4 protocol is not supported by this specification. Low power lossy networks is a

concept that refers to networks made up of heavily compressed nodes linked by a set of "

lossy " connections (LLNs). Low speed, low throughput, low cost, and unreliable networking

are typical characteristics. A LoWPAN is a kind of LLN made up of IEEE 802.15.4-compliant

modules.

The following are the features of LoWPANs [46]: Sleeping mode; small packet size Several

addressing modes are specified by IEEE 802.15.4. a limited bandwidth; Star and mesh

topologies are examples of topologies. Usually, the location of the instruments is not

predetermined. LoWPAN devices are notoriously inefficient. A large number of sensors are

expected to be installed during the technology's lifespan.

IPv6 has a number of benefits. Because of the design of IP networks, existing infrastructure

may be used. IP-based systems have been shown to work and are readily available, making

deployment faster and less expensive. IP networking infrastructure is documented in open,

publicly accessible specifications.

IP networking tools are available. Without the use of intermediary organizations like protocol

translation gateways or proxies, IP-based devices may bind to other IP-based networks. IPv6

allows for a large number of addresses and allows for self-configuration of network

parameters (SLAAC). This is important for 6LoWPANs, which would accommodate a huge

number of computers.

The small packet size is one of the characteristics of 6LoWPANs. As a result, IPv6 and higher

layer headers are compressed wherever possible.

A considerable number of LoWPAN instruments have been deployed. They'll just need a small

monitor and input system.

These devices' locations can be difficult to find. The protocols used in LoWPANs should have

a minimal setup, according to the recommendations. To discover, monitor, and manage the

services offered by the devices, LoWPANs include basic service discovery network protocols.

P a g e | 202

7.4.2.1 6LoWPAN protocol stack

Figure 7-7: 6LoWPAN protocol stack [46]

The primary explanation for improving IETF specifications is that there are some critical

problems that need to be resolved by using an adaptation layer between the IP (network

layer) and the lower layer: 6LoWPAN 6LoWPAN (Figure 7-7). Some features of 6LoWPAN are:

Fragmentation and Reassembly layer; Header Compression; Address Autoconfiguration,

Mesh Routing Protocol.

IEEE 802.15.4 defines four types of frames: beacon frames, MAC command frames,

acknowledgement frames, and data frames. IPv6 packets must be transported in data frames.

It is recommended that IPv6 packets be transported in data frames.

Both source and destination addresses must be included in the IEEE 802.15.4 frame header.

The source or destination PAN ID fields may be included.

Both 64-bit extended addresses and 16-bit short addresses are supported.

IPv6 level multicast packets are transported as link layer broadcast frames in IEEE 802.15.4

networks.

P a g e | 203

Figure 7-8: IPv6 frame

Due to limited bandwidth, power or memory resources, the 6LoWPAN adaptation format was

specified to transport constrained links. 6lowpan offers a solution for each of these objectives

and requirements:

• A mesh addressing header to support sub-IP forwarding.

• A fragmentation header to support the IPv6 minimum MTU requirement.

• A broadcast header to be used when IPv6 multicast packets are to be sent over the

IEEE 802.15.4 network.

• Stateless header compression for IPv6 datagrams to reduce IPv6 and UDP headers.

These headers are used as LoWPAN encapsulation.

P a g e | 204

8 IoT Connectivity Protocols

Author(s): Fabrizio Granelli

 Claudio Sacchi

This Photo by Unknown Author is licensed under CC BY-SA

http://www.malaysianwireless.com/2015/07/internet-of-things-connected-devices-to-almost-triple-to-over-38-billion-units-by-2020/
https://creativecommons.org/licenses/by-sa/3.0/

P a g e | 205

8.1 IoT Connectivity Protocols

IoT promises to interconnect and network “objects”, from smart meters to household

machines, from cars to tiny sensors. However, the network needs to follow up and to satisfy

such unprecedented demand, and this represents especially for the mobile industry a big

obstacle to overcome. The traditional centralised mobile network architecture may simply

not be up to the job of handling the huge traffic volumes and massive connectivity expected

to result from the billions of IoT devices predicted to come on stream over the next few years.

Indeed, the architecture of today’s mobile networks, based on a centralised star topology,

needs to be redesigned to cope with billions of devices rather than the millions of

smartphones for which they were originally intended.

IoT is expected to enable new levels of wireless connectivity to a broad range of things by

bringing devices, people and analytics platforms together. The combination of sensor and

aggregated data with other related information will spark new services, applications and

opportunities.

This section will analyze the different aspects related to connectivity of IoT devices.

8.2 IoT Connectivity Paradigms

The Internet of Things is a complex system-of-systems. Indeed, the implementation of

different levels of interactions among sensors and actuator might involve different

communication technologies and/or a combination of several communication networks.

A general view of the IoT architecture is proposed in Error! Reference source not found..

1. Sensors and actuators (providing access to the outer world via sensing and actuating)

2. Internet getaways and Data Acquisition Systems (processing the enormous amount of

information collected on the previous stage and converting)

3. Edge IT (performing enhanced analytics and data pre-processing)

4. Data center and cloud (providing in-depth processing and service delivery)

P a g e | 206

Figure 8-1: General stages of an IoT architecture.

Stage 1: Sensors/Actuators (wired, wireless)

Stage 2: Internet Gateways, Data Acquisition Systems (data aggregation, A/D,
measurement, control)

Edge IT (analytics, pre-processing)

Stage 4: Data Center / Cloud (analytics, management, archive)

P a g e | 207

Figure 8-2 provides a high-level illustration of different data flows paradigms that might be

triggered in an IoT application or service.

Some applications might require actions that may be taken on sensors locally or via processing

at an Application provider location or via the end user’s operation centre, while other services

might require global access, e.g. global cellular access – through a Mobile Network Operator

or even a Mobile Virtual Network Operator (MVNO).

This will depend on the conceptual location where decisions are made. Decision making may

be local (e.g. via local computing in proximity, thus implying usage of direct communication

technologies) or remote (e.g. via a cloud server accessible through a WAN connection), or

even a combination of local and remote.

Moreover, it is important to notice that for interoperability reasons most sensors and

actuators are accessible by proper IoT gateways. The gateways enable to “translate” the IoT-

specific communication standards (e.g. LPWAN, LoRA, etc.) into LAN/WAN standards (e.g.

defining data formats that can be encapsulated into IP datagrams).

P a g e | 208

Figure 8-2: Different operations among sensors and actuators in the Internet of Things.

Typically, long range connectivity is provided by existing IP networks, in order to integrate IoT

services within the public Internet. Nevertheless, for a reliable operation, the Internet of

Things require proper architectures to adapt the general Internet to its requirements and

specific features.

In this framework, the most relevant models are those proposed by ETSI and IETF.

Figure 8-3 illustrates the ETSI model, which proposes a model focused on the perspectives of

telecom carriers.

Sensors Actuators

Communications gateway

WiLAN

WAN

LP WAN Modem

Carrier Access Network LPWAN Base Station

Sensors Actuators

LPWAN

MVNO Communication Center

Fiber or other Network

Subscriber Operation Center

Application Provider

Fiber or other Network

Fiber or other Network

Local Computing Local Computing

P a g e | 209

Figure 8-3: Internet of Things connectivity model by ETSI.

The figure shows the pieces of an IoT connectivity solution from a technical perspective. It

does not show the business pieces which can be even more complex, with various companies

supplying pieces of the various sections. For example, one might buy Network management

from a third party who then interacts with both the carrier’s network, your devices and

gateways and your back ends.

The model clearly outlines the boundaries between the IoT Area Network, which is typically

IoT-specific (e.g. communication is performed by using IoT standards), and the Network

Domain, which represents the WAN connectivity and includes the services.

Like all networking solutions, IoT wireless networks can be built in a variety of configurations

– following a modular approach. The IoT device may attach to the user equipment – health

monitoring of equipment, process or environmental sensors – or it may be the user’s

equipment (location tracking device).

The model assumes both the possibility for the network carrier to directly provide application

services as well as to run many applications “over the top” of the proposed model.

An IoT device may connect directly to the WAN or connect to a local gateway.

In those cases where there is a gateway, two wireless choices need to be made – the cellular

User

Eqt.

IoT

Device

IoT

Gateway

Access

Network

- Cellular

- Wired

- Fixed

wireless

- other

Service

Capabilities

Appli-

cations

Device & Gateway Domain Network Domain

IoT Area Network

User

Eqt.

IoT

Device

Core

Network

IoT

Device

IoT

Device

Network Mgmt
Service

Mgmt

P a g e | 210

side of the gateway and the IoT Area Network side – star, tree, mesh/ad-hoc architectures,

standards-based or proprietary.

The IETF model represents an Internet-centric model, which is based on the 6LowPAN

architecture. 6LoWPAN is the acronym of IPv6 over Low-Power Wireless Personal Area

Networks. The 6LoWPAN concept originated from the idea that "the Internet Protocol could

and should be applied even to the smallest devices," and that low-power devices with limited

processing capabilities should be able to participate in the Internet of Things.

The 6LoWPAN standard provides encapsulation and header compression mechanisms that

allow IPv6 packets to be sent and received over IEEE 802.15.4 based networks. In particular,

IPv4 and IPv6 are used for data delivery in common packet-switched network architectures

such as the Internet, while IEEE 802.15.4 standard provides equipped devices with sensing/

communication ability in the wireless access domain.

6LoWPAN main specification is provided by IETF group in RFC 4944 [73]. The RFC was updated

by RFC 6282 introducing header compression, and by RFC 6775 including neighbour discovery

optimizations. IPv6 over Bluetooth Low Energy (BLE) is instead defined in RFC 7668.

RFC 4944 proposes an IPv6 over Low-Power Wireless Area Networks approach based on direct

end-to-end Internet integration. The benefits of 6LoWPAN include: openness, availability of

standards, transparent Internet integration, global scalability, end-to-end data flow

management and small device memory footprint.

6LoWPANs represent stub networks. By definition, “a stub network is a computer network, or

part of an internetwork, with no knowledge of other networks, that will typically send all of its

non-local traffic out via a single path, with the network aware only of a default route to non-

local destinations”.

Indeed, the transition/integration of IoT on the public Internet architecture is not trivial, since

IoT is characterized by constrained resources (bitrate, power, computational power), massive

connectivity and highly intermittent traffic (Figure 8-4).

To this goal, the following protocol stack changes are required:

1. The general Internet protocol stack is not the best fit for IoT applications, so changes

are required to make for reliable and properly functioning IoT systems;

P a g e | 211

2. Modified TLS to support UDP data transfer is preferred in many IoT applications over

TCP, which requires relevant overhead due to the session management;

3. CoAP is a tiny subset of HTTP with interworking via proxy server;

4. RPL routing supports a multitude of router selection approaches including link

reliability and power source.

Figure 8-4: Internet of Things connectivity model by IETF (from regular web to IoT).

8.3 Application Layer Protocols for the IoT

In general, the application layer protocols for the Internet of Things employ the REST

paradigm, which represents the reference communications architecture for IoT devices.

However, typically, the IoT devices are resource constrained, and there may be data loss or a

high memory requirement in this type of communication.

For this reasons, several protocols might be used at application level, with the most common

being of course HTTP. Nevertheless, other suitable protocols for IoT communications are

Message Queue Telemetry Transport (MQTT), Constrained Application Protocol (CoAP),

WebSocket, Extensible Messaging and Presence Protocol (XMPP), and Advanced Message

Queuing Protocol (AMQP).

Regular Web

• Usually ample bit rate

• Usually ample power

• Large processing power

• Large data flows

• Streaming AV & Flash

• Pretty web pages

• Near continuous connectivity

IoT

• Bit rate constrained

• Power constrained

• Processor constrained

• Small data flows

• Sensor date

• Operational state

• Intermittent connectivity

TLS => DTLS

IPv4 /x => 6LowPAN
HTTP => CoAP

OSPF => RPL

P a g e | 212

8.3.1 HTTP

Hypertext Transfer Protocol represents a possible alternative to support IoT services and

maintain compatibility with the World Wide Web. HTTP is based on a client-server paradigm,

where the client requests data from the server through a TCP connection.

HTTP messages are text-based and are characterized by a relevant level of redundancy, both

in the HTTP headers as well as in the transported format (typically html text or binary data

converted to text format). For this reason, header compression is a common functionality to

reduce the communication overhead and data size in IoT scenarios.

8.3.2 MQTT

The Message Queuing Telemetry Transport (MQTT) protocol is an open OASIS and ISO

standard (ISO/IEC 20922). MQTT allows lightweight message transport between devices

through a publish-subscribe network protocol. Indeed, the purpose of MQTT is to provide

connections with remote locations, under constraints of “small code footprint” and/or limited

network bandwidth. The protocol was designed to run over TCP/IP; however, any network

protocol that provides ordered, lossless, bi-directional connections can support MQTT.

The MQTT protocol allows communications between two types of network entities: a

message broker and several clients. The MQTT broker acts as a server, and it receives all

messages from the clients. The messages are then routed to the appropriate destination

clients. By definition, an MQTT client is any device that runs an MQTT library and connects to

an MQTT broker over a network. This includes micro controllers up to full-fledged servers.

In the MQTT protocol, collected information is organized in a hierarchy of topics. When an

MQTT client (in this case, the publisher) acquires a new item of data to distribute, it sends a

control message with the data to the connected broker. The MQTT broker then distributes

the information to any clients (in this case, the subscribers) that have subscribed to that topic.

The publisher does not need to have any knowledge on the number or locations of

subscribers, and subscribers, in turn, do not have to be configured with any data about the

publishers.

An example of an MQTT connection is provided in Figure 8-5.

P a g e | 213

Figure 8-5: Example of an MQTT connection (Source: Wikipedia).

8.3.3 CoAP

The Constrained Application Protocol (CoAP), defined in RFC 7252, is a specialized Internet

Application Protocol for constrained devices. CoAP is designed for use between devices on

the same constrained network (e.g., low-power, lossy networks), called “nodes”, between

devices and general nodes on the Internet, and between devices on different constrained

networks both connected through the Internet. CoAP can be implemented via other

mechanisms, such as SMS in the case of mobile networks.

P a g e | 214

CoAP is designed to be converted to HTTP for simplified integration with the web.

Neverthless, CoAP supports specialized requirements such as multicast support, very low

overhead, and simplicity. CoAP can run on most devices that support UDP or similar transport

layer protocols.

Most of the standardization efforts for CoAP were done by the Internet Engineering Task

Force (IETF) Constrained RESTful Environments Working Group (CoRE), with the specification

include in RFC 7252. Several CoAP extensions are planned and in different phases of

standardization in order to make the protocol suitable to IoT and M2M applications.

8.3.4 WebSocket

WebSocket is a computer communications protocol, standardized by the IETF as RFC 6455 in

2011. WebSocket provides full-duplex communication channels over a single TCP connection.

Even though both WebSocket and HTTP are located at layer 5 (application) of the TCP/IP

layered model and request services to TCP at layer 4, RFC 6455 states that WebSocket "is

designed to work over HTTP ports 443 and 80 as well as to support HTTP proxies and

intermediaries," thus making it compatible with the HTTP protocol. Compatibility is achieved

by enabling the WebSocket handshake to exploit the HTTP Upgrade header, in order to

change from the HTTP protocol to the WebSocket protocol operation.

In practice, the WebSocket protocol enables interaction between a web browser (or other

client application) and a web server with lower overhead than half-duplex alternatives such

as HTTP polling, facilitating real-time data exchange between client and server.

8.3.5 AMQP

The Advanced Message Queuing Protocol (AMQP) is an open standard application layer

protocol for message-oriented middleware. AMQP provides the following services: message

orientation, queuing, routing (including point-to-point and publish-and-subscribe), reliability

and security.

AMQP is a wire-level protocol. A wire-level protocol provides a description of the format of

the data that is sent across the network as a stream of bytes. Consequently, any tool that can

create and interpret messages that conform to this data format can interoperate with any

other compliant tool irrespective of the specific implementation implementation language.

P a g e | 215

As a consequence, AMQP do not specify the protocol for data transfer between the messaging

provider and client, in order to enable implementations from different vendors to be

interoperable, in a similar way as SMTP, HTTP, FTP.

8.3.6 Test cases for the IoT Protocols

The following table provides a summary of the IoT protocols discussed in the previous sub-

sections and some potential use cases for each one.

Name Description Use Case

MQTT Simple and lightweight IoT protocol designed for

constrained devices and low network bandwidth.

See mqtt.org.

Small medical devices with limited

network connectivity, mobile

apps in mobile devices, sensors in

remote locations that

communicate with a gateway.

CoAP Protocol based on the REST model and is suitable

for constrained devices such as a microcontroller

or a constrained network because it functions

with minimum resources in the device or the

network. See http://coap.technology/.

Smart energy applications and

building automation applications.

WebSocket A full-duplex communication channel over a TCP

connection.

Implement WebSocket in runtime

environments or libraries that act

as servers or clients. You can apply

WebSockets in an IoT network

where chunks of data are

transmitted continuously within

multiple devices.

XMPP Uses the XML text format for communication and

runs over TCP. It's not fast and uses polling to

Use XMPP to connect your home

thermostat to a web server so

that you can access it from your

http://mqtt.org/
http://coap.technology/

P a g e | 216

8.4 Integrating IoT within current networks

After reviewing the application-level protocols, it is then necessary to discuss how to

interconnect the objects that we want to use for building IoT services. In this scenario, we

need to consider existing dominant technologies at the different layers of the protocol stack,

from the network down to the physical layer of the TCP/IP protocol stack.

Since detailed description of IP, Ethernet or other specific technology is out of the scope of

this textbook, the following subsections provide a short summary about the functionalities

and usage of the different technologies that might be integrated in the IoT.

8.4.1 IPv4/IPv6, Ethernet/GigE.

The reference scenario is the current and future Internet. This implies the need to use the

Internet Protocol (IP) as the common layer 3 technology, in order to foster interoperability

and enable interconnection of different underlying technologies. Currently, two versions of

IP are available: the “old” IPv4 and the “new” IPv6. As already mentioned, several approaches

to IoT connectivity already focus on IPv6, but we should consider that currently IPv4 is still

diffused especially at the access/home level.

Local Area Network (and in some cases also Metropolitan Area Network) connectivity is

dominated by the Ethernet standard and its extensions. Most diffused versions of Ethernet

include Fast Ethernet (100Mbps) and Gigabit Ethernet (1Gbps), even though the standard is

evolving towards higher data rates. Gigabit Ethernet (GbE or 1 GigE) is based on the variant

1000BASE-T defined by the IEEE 802.3ab standard.

check for updates when needed.

See https://xmpp.org

phone. It's used in consumer-

oriented IoT applications.

AMQP The message queue asynchronous protocol is for

communication of transactional messages

between servers. See https://www.amqp.org/

AMQP is best used in sever-based

analytical functions. It's

effectively used in the banking

industry.

https://xmpp.org/
https://www.amqp.org/

P a g e | 217

8.4.2 Cellular/WAN connectivity

Long range connectivity represents a necessary building block of the Internet of Things.

Indeed, in most cases, services will be hosted in cloud data centers, or they might require

access to different and distant geographically distributed areas.

Technologies to be used at this stage can be wired or wireless.

Wired long range connectivity is clearly provided by optical fibers. Optical fibers are used most

often as they permit transmission over longer distances and at higher bandwidths (data

transfer rates) than electrical cables.

Wireless WANs are represented by cellular networks. Most diffused cellular networks today

belong to the 4G LTE standard, while 5G is being deployed.

Today’s LTE networks are based on a star topology with a centralised EPC (Evolved Packet

Core) for handling authentication, signalling and network traffic, with the average base

station typically capable of handling signalling for up to 1000-1500 devices. Such numbers

might become critical under the assumption of massive connectivity required by IoT.

The future 5G is expected to address massive machine-type communications as one of the

main deployment scenarios, therefore it is expected to represent the most appropriate

cellular wireless technology to use for the Internet of Things.

8.4.3 Dedicated standards

This section illustrates an overview of the standards that are specific to the Internet of Things

domain. Such standards are typically dedicated to low-power communications and

WLAN/WPAN scenarios, and they cover layers 1 (physical layer) and 2 (link layer) of the TCP/IP

protocol stack.

8.4.3.1 IEEE 802.15.4

IEEE 802.15.4 [74] is a technical standard maintained by the IEEE 802.15 working. It specifies

the physical layer and media access control for operation of low-rate wireless personal area

networks (LR-WPANs). IEEE 802.15.4 is the basis for other standards, such as Zigbee,

ISA100.11a, WirelessHART, MiWi, 6LoWPAN, Thread and SNAP specifications, each of which

further extends the standard by developing the upper layers (which are not in the scope of

P a g e | 218

IEEE 802.15.4). As an example, 6LoWPAN defines a binding for the IPv6 version of the Internet

Protocol (IP) over WPANs.

The basic IEEE 802.15.4 specification focuses on a 10-meter communications range with a

transfer rate of 250 kbit/s. Tradeoffs are possible to balance performance against power

consumption, through the definition of multiple alternatives at the physical layer. Lower

transfer rates of 20 and 40 kbit/s were initially defined, with the 100 kbit/s rate being added

in the current revision.

Relevant features of IEEE 802.15.4 include: the implementation of random access with

collision avoidance through CSMA/CA, available of real-time traffic management by

reservation of Guaranteed Time Slots (GTS), and integrated support for secure

communications. Devices also include power management functions related to link quality

and energy measurements. The standard can support time and rate sensitive applications

because of its ability to operate alternatively in pure CSMA/CA or TDMA access modes. The

TDMA mode of operation is supported via the GTS feature of the standard.

IEEE 802.15.4-compatible devices may use three possible frequency bands of operation (868

MHz / 915 MHz / 2450 MHz).

8.4.3.2 M-PHY

MIPI (Mobile Industry Processor Interface) Alliance is a global business alliance that develops

technical specifications for the mobile ecosystem, especially smart phones.

MIPI specifications address only the interface technology, focusing on signaling characteristics

and protocols. Indeed, MIPI standards do not address entire application processors or

peripherals. The main purpose of MIPI is to enable products to share common interfaces, thus

facilitating system integration.

Because MIPI specifications address only the interface requirements of application processor

and peripherals, MIPI compliant products are applicable to all network technologies, including

GSM, CDMA2000, WCDMA, PHS, TD-SCDMA, and others. In this sense, MIPI is agnostic to air

interface or wireless telecommunication standards.

M-PHY [75] is a high speed data communications physical layer protocol standard developed

by the MIPI Alliance - PHY Working group, and targeted at the needs of mobile multimedia

P a g e | 219

devices. The specification's details are proprietary to MIPI member organizations. M-PHY was

incorporated into several industry standards, such as Mobile PCI Express, Universal Flash

Storage, and as the physical layer for SuperSpeed Inter-Chip USB.

M-PHY supports a broad range of signaling speeds, ranging from 10 kbit/s to over 11.6 Gbit/s,

by using two different major signaling/speed modes, a simple low-speed (using PWM) mode

and high speed one (using 8b10b). Communication is implemented in bursts, and the design

of both high-speed and low-speed modes allows for extended periods of idle communications

at low-power, making the design particularly suitable for mobile devices.

8.4.3.3 UniPro

UniPro (or Unified Protocol) [76] is a high-speed interface technology for interconnecting

integrated circuits in mobile and mobile-influenced electronics, created within the MIPI

Alliance (see section 8.4.3.2).

UniPro aims to provide high-speed data communication (gigabits/second), low-power

operation (low swing signaling, standby modes), low pin count (serial signaling, multiplexing),

small silicon area (small packet sizes), data reliability (differential signaling, error recovery)

and robustness (proven networking concepts, including congestion management).

UniPro version 1.6 concentrates on enabling high-speed point to point communication

between chips in mobile electronics. UniPro supports networks consisting of up to 128 UniPro

devices (integrated circuit, modules, etc.). Couples of UniPro devices are interconnected via

so-called “links” while data packets are routed toward their destination by UniPro switches.

These switches operate in a similar way with respect to the routers used in wired LAN based

on gigabit Ethernet. However, UniPro technology was designed to connect chips within a

mobile terminal, and not hosts across a network.

The UniPro protocol stack follows the classical OSI or TCP/IP reference layered architecture.

OSI's Physical Layer is split into two sub-layers: Layer 1 (the actual physical layer) and Layer

1.5 (the PHY Adapter layer) which abstracts from differences between alternative Layer 1

technologies.

P a g e | 220

Layer # Layer name Functionality
Data unit

name

LA Application Payload and transaction semantics Message

DME

Layer 4 Transport Ports, multiplexing, flow control Segment

Layer 3 Network Addressing, routing Packet

Layer 2 Data link
Single-hop reliability and priority-based

arbitration
Frame

Layer

1.5
PHY adapter

Physical layer abstraction and multi-lane

support

UniPro

symbol

Layer 1
Physical layer

(PHY)

Signaling, clocking, line encoding, power

modes
PHY symbol

Figure 8-6: UniPro Protocol Stack (Source: Wikipedia).

The UniPro specification itself covers Layers 1.5, 2, 3, 4 and the DME (Device Management

Entity). The Application Layer (LA) is out of scope, while he Physical Layer (L1) is covered in

separate MIPI specifications in order to allow the PHY to be reused by other (less generic)

protocols.

8.4.3.4 SPMI

The System Power Management Interface (SPMI) is another standard specified by the MIPI

Alliance. SPMI is a high-speed, low-latency, bi-directional, two-wire serial bus suitable for real-

time control of voltage and frequency scaled multi-core application processors and its power

management of auxiliary components.

8.4.3.5 SuperSpeed USB Inter-Chip (SSIC)

https://en.wikipedia.org/wiki/Flow_control_(data)

P a g e | 221

InterChip USB is an addendum to the USB Implementer Forum's USB 2.0 specification. This

standard is identified by multiple names and acronyms, including IC-USB, USB-IC, Inter-chip

USB, or High-Speed Inter-Chip (HSIC). The USB 3.0 successor of HSIC is called SuperSpeed

Inter-Chip (SSIC).

IC-USB is intended as a low-power variant of the standard physical USB interface, aimed at

direct chip-to-chip communications, with a maximum length of 10 cm for reduced power

requirements.

IC-USB is being used primarily in embedded systems and standards, especially on mobile

phones where, for instance, ETSI (in specification TS 102 600) has standardized on IC-USB as

the official high-speed interface for connections between the phone's main chipset and the

SIM card or UICC card.

USB 2.0 High-Speed Inter-Chip (HSIC) is a chip-to-chip variant of USB 2.0 that eliminates the

conventional analog transceivers found in normal USB, and it uses about 50% less power and

75% less board area compared to traditional USB 2.0. HSIC uses two signals at 1.2 V and

provides a throughput of 480 Mbit/s.

8.4.3.6 Mobile PCIe (M-PCIe)

PCI Express (Peripheral Component Interconnect Express) is a high-speed serial computer

expansion bus standard, designed to replace the older PCI, PCI-X and AGP bus standards. PCIe

(or PCI-e) is the common motherboard interface for personal computers' graphics cards, hard

drives, Solid State Drives, Wi-Fi and Ethernet hardware connections.

Mobile PCIe specification (abbreviated to M-PCIe) [77] allows PCI Express architecture to

operate over the MIPI Alliance's M-PHY physical layer technology, with the target to enable

mobile devices to use PCI Express.

8.4.3.7 SPI

The Serial Peripheral Interface (SPI) is a synchronous serial communication interface

specification used for short-distance communication, primarily in embedded systems. Typical

applications include Secure Digital cards and liquid crystal displays.

P a g e | 222

SPI devices communicate in full duplex mode using a master-slave architecture with a single

master. The master device manages access to the transmission medium for reading and

writing. Multiple slave-devices are supported through selection with individual slave select

(SS) lines.

8.4.3.8 MODBUS

Modbus [78] is a data communications protocol originally published by Modicon (now

Schneider Electric) in 1979 for use with its programmable logic controllers (PLCs). It is

extremely diffused in industrial environments because it is openly published and royalty-free,

becoming a de facto standard communication protocol and is now a commonly available

means of connecting industrial electronic devices. Modbus uses the RS485 or Ethernet

physical layers. Modbus supports communication to and from multiple devices connected to

the same cable or Ethernet network, e.g., enabling a device that measures temperature and

a different device to measure humidity to communicate with a computer.

The typical application of Modbus is in Supervisory Control and Data Acquisition (SCADA)

systems in the electric power industry, where Modbus is used to connect a plant/system

supervisory computer with a remote terminal unit (RTU).

8.4.3.9 OBD

On-board diagnostics (OBD) is an automotive term referring to a vehicle's self-diagnostic and

reporting capability, as well as a specification for communication with the vehicle on-board

devices. OBD systems provides the vehicle owner or repair technician access to the status of

the various vehicle sub-systems. The amount of diagnostic information available via OBD has

varied widely since its introduction in the early 1980s versions of on-board vehicle computers.

Modern OBD implementations use a standardized digital communications port to provide

real-time data in addition to a standardized series of diagnostic trouble codes, or DTCs, which

allow a person to rapidly identify and remedy malfunctions within the vehicle.

8.5 Test cases for Connecting the Internet of Things

There are several options to connect devices to the Internet of Things. The selection of the

proper method is based on the types of devices, protocols, and existing environment.

P a g e | 223

The following diagram and table describe the available options to connect IoT devices to the

Internet of Things based on different scenarios and protocols.

Figure 8-7: IoT connection scenarios (based on the Oracle IoT Cloud Service [79] concept).

Historians • SCADA systems

Industrial
Software
Gateway

• On premises SW
gateway

Network
Service

Providers

• IoT MVNO, LoRA,
NB-IoT

• Asset Tracker
• Telematic Gateway

Industrial
Gateways

• IoT Gateway
• Sensors with

proprietary or
modbus interfaces

Directly
Connected

Devices

• On board
Communicator

3rd Party
Device
Clouds

• 3rd Party Device
Cloud

• Proprietary
interfaces

HTTP

HTTP

HTTP /
MQTT

HTTP

HTTP

HTTP

IoT
Cloud

P a g e | 224

Scenario Option to Connect the Devices Example

Devices that support

proprietary protocols.

Sensors and machines connect

indirectly to Internet of Things

Cloud Service through a

standardized industrial gateway

using proprietary protocols.

A device uses the MODBUS protocol to

connect with an industrial IoT gateway

which, in turn, connects to Internet of

Things Cloud Service using the HTTP

protocol

Machine with a

powerful in-built

sensor that supports

HTTP protocol.

Directly connect with Oracle

Internet of Things Cloud

Service using HTTP.

A device such as an on-board

communicator directly exchanges

messages with the Internet of Things

Cloud Service by using the HTTP

protocol.

Devices that are

already connected to

an existing third-party

cloud service using

proprietary protocols.

Third-party clouds can connect

with the Internet of Things

Cloud Service using HTTP. This

results in the devices getting

indirectly connected to Internet

of Things Cloud Service.

A device such as an OBD II data logger

connects to a third-party cloud service

using its proprietary protocol. The third-

party device cloud connects to Internet

of Things Cloud Service using the HTTP

protocol.

Devices and gateways

that are already

connected to existing

network providers that

provide wireless

connectivity to the

devices.

The network providers can

transmit the device data to

Internet of Things Cloud

Service using HTTP or MQTT.

Network providers use LoRA, NB-IoT, or

IoT MVNO for wireless connectivity with

devices such as an asset tracker or a

telematics gateway. The network

provider can transmit the device

messages to Internet of Things Cloud

Service using HTTP or MQTT.

Existing database with

device data on events,

time stamps, and

alarms.

The on-premises database can

connect to Internet of Things

Cloud Service using HTTP and

transfer the device messages.

Machines using the Historian service

save and store messages in a database

or multiple databases over the

supervisory control and data acquisition

P a g e | 225

Scenario Option to Connect the Devices Example

(SCADA) network. An on-premises

Historian service connects to Internet of

Things Cloud Service and provides the

machine data for analysis.

Existing on-premises

industrial gateway

software

On-premises industrial gateway

software applications manage

machine data. The Internet of

Things Cloud Service can

connect to these gateway

applications using HTTP to

obtain the machine data.

Machines that use OPC Unified

Architecture (UA), a machine-to-

machine protocol to transfer machine

data to industrial gateway software and

that, in turn, can connect to the

Internet of Things Cloud Service and

send device messages received from

the machines.

P a g e | 226

9 Data Storage and Cloud

Systems

Author(s): Fabrizio Granelli

This Photo by Unknown Author is licensed under CC BY-NC

http://www.pngall.com/cloud-server-png
https://creativecommons.org/licenses/by-nc/3.0/

P a g e | 227

9.1 Introduction

Cloud computing and data storage systems represent extremely relevant services to support

modern Internet of Things applications. Indeed, IoT and cloud are nowadays two related

Internet technologies, which go hand-in-hand in IoT deployments. Typically, cloud computing

represents a key component for the development and deployment of scalable Internet-of-

Things business models and applications.

Several modern massive IoT ecosystems are based on the cloud support, as it will be described

in the next sub-section of this part of the course. Nevertheless, before describing how IoT and

cloud computing can be integrated, we will introduce some basic cloud computing concepts.

Most modern IoT ecosystems are cloud-based, as it will be described in the next sections of

this course. The purpose of the next section is to briefly discuss the main concepts within the

cloud computing paradigm as well as the integration between IoT and cloud computing

architectures.

9.2 Cloud Computing Basics

Cloud computing provided a big step forward in the delivery of ICT resources and services,

and it represented conceptually an evolution of the well-known client-server paradigm. In

cluod computing, ICT services and infrastructure can be delivered as services, including

computing power, computing infrastructure (e.g., servers and/or storage resources),

applications, business processes and more. This is allowed by the availability of a powerful

computational and communications infrastructure in the form of datacenters, and the

implementation of proper virtualization technologies to enable flexibility and scalability in the

management of such huge amounts of resources.

Cloud services can be offered through infrastructures (clouds) that are publicly accessible (i.e.

public cloud services), but also by privately owned infrastructures (i.e. private cloud services).

Furthermore, it is possible to offer services supporting by both public and private clouds,

which are characterized as hybrid cloud services.

Cloud computing infrastructures and services have the following characteristics:

• Elasticity and scalability: The elastic nature of the cloud computing paradigm

facilitates the implementation of flexibly scalable business models, e.g., enabling

P a g e | 228

enterprises to use more or less resources as their business grows or shrinks. Indeed,

cloud computing services can automatically be scaled upwards during high periods of

demand and downward during periods of lighter demand to adapt the service needs.

• Self-service provisioning and automatic deprovisioning: Cloud computing provides

easy access to cloud services without a lengthy and complex provisioning process. In

cloud computing, both provisioning and de-provisioning of resources are represented

by automated functionalities due to the implementation of virtualization and

abstraction methodologies.

• Application programming interfaces (APIs): Cloud services are accessible via high level

APIs, which enable and facilitate applications and data sources to communicate with

each other.

• Billing and metering of service usage in a pay-as-you-go model: Cloud services are

associated with a utility-based pay-as-you-go model. To this end, they provide the

means for metering resource usage and subsequently issuing bills.

• Performance monitoring and measuring: Cloud computing infrastructures provide a

service management environment for enabling transparent and flexible control on the

system performance and collecting information about its state.

• Security: Cloud computing infrastructures offer security functionalities towards

safeguarding critical data and fulfilling customers’ compliance requirements.

Depending on the types of resources that are accessed as a service, cloud computing is

associated with different service delivery models (Figure 9-1):

• Infrastructure as a Service (IaaS): IaaS deals with the delivery of storage and computing

resources towards supporting custom business solutions. In this case, the user is the

owner of the service and it has the capability to set up its operating environment

based on his/her needs. The most relevant example of IaaS service Amazon’s Elastic

Compute Cloud (EC2), which uses the Xen open-source hypervisor to create and

manage virtual machines.

• Platform as a Service (PaaS): PaaS provides development environments for creating

cloud-ready business applications. It provides a deeper set of capabilities comparing

to IaaS, including development, middleware, and deployment capabilities. PaaS

enables direct deployment of applications on a standardized set of interfaces and

P a g e | 229

services. Typical examples of PaaS services are Google’s App Engine and Microsoft’s

Azure cloud environment, which both provide a workflow engine, development tools,

a testing environment, database integration functionalities, as well as third-party tools

and services.

• Software as a Service (SaaS): SaaS services enable access to purpose-built business

applications in the cloud. In this case, the typical user is interested only in accessing a

specific service, which is delivered on the Internet with the pay-as-you-go model, it

enables to reduce CAPEX and it is supported by the elastic properties of cloud

computing infrastructures.

Figure 9-1: Cloud computing service models.

9.3 Processing for the Internet of Things Services

Summarizing what we discussed in the previous sections of this course, we can divide an IoT

service into three basic components, the device, gateway, and cloud:

P a g e | 230

Figure 9-2: Simplified IoT service model (based on a concept by Google).

The device component represents hardware and software that directly interact with the

world, i.e. the sensor or actuator. Devices need to connect to a network to communicate -

either with each other or to centralized applications. In this scenario, devices might be directly

or indirectly connected to the Internet (i.e. connected through a gateway).

A gateway enables devices that are not directly connected to the Internet to reach cloud

services. The reader should note that even though the term gateway in the context of

networking describes a specific function, in the context of IoT the term might also be used to

describe a device that processes data on behalf of a group or cluster of devices. Ideally, once

the data from each device is sent to the cloud, the cloud servers process and combine it with

data from other devices, and potentially with other business-related data.

Device

Gateway

Cloud

P a g e | 231

Those three components represent different location where to perform processing and

storage of data.

9.3.1 On-device Processing

Besides collecting data from a sensor, an IoT device can provide data processing functionality

before sending the data to the cloud. This procedure is called on-device processing. Following

this paradigm, multiple devices might handle and process the data before it gets to the cloud,

therefore already introducing some amount of processing.

The following diagram illustrates sample on-device processing tasks.

P
ro

ce
ss

in
g

Converting

Packaging

Validating (e.g.
x>=5)

Combining

Enhancing

2 5 1 7

0.2 0.5 0.1 0.7

2 5 1 7

2 5 1 7

m=3.75

2 5 1 7

1 2 3 4

P a g e | 232

Figure 9-3: On-device sample processing operations.

Processing might include the following functionalities:

• Converting data between different formats

• Packaging and organizing data in a way that's secure and combines the data into a

practical batch

• Validating data to ensure it complies with a set of rules

• Sorting data to create a requested sequence

• Enhancing data to decorate the core value with additional related information

• Summarizing data to reduce the volume and eliminate unneeded or unwanted detail

• Combining data into aggregate values

• On-device analysis can combine multiple processing tasks to provide an intermediate,

synthesized interpretation that enables more information to be transmitted in a

smaller data footprint.

9.3.2 Gateway Processing

An IoT gateway device manages traffic between networks that use different protocols, it is

responsible for protocol translation and other interoperability tasks, and it can be employed

to provide the connection and translation between devices and the cloud.

As it was discussed earlier in the course, since some devices might not contain the network

stack required for Internet connectivity, a gateway device acts as a proxy, receiving data from

devices and packaging it for transmission over TCP/IP.

A dedicated gateway device might be a requirement in case of absence of connectivity to the

Internet, lack of support for transport-layer security (TLS) communications, or even by power

limitations.

There are setups in which a gateway device might be used even in the case IoT devices are

capable of communicating without its direct need. In this situation, the added value provided

by the presence of the gateway might be to provide pre-processing of the data across multiple

devices before sending it to the cloud.

In general, the following tasks can be re-allocated (or delegated) to a gateway device:

P a g e | 233

• Compressing/analyzing data to maximize the amount of useful information that can

be sent to the cloud over a single bandwidth-limited link

• Storing data in a local database, and then forwarding it on in case the connection to

cloud is not always available

• Providing a real-time clock, with a battery backup, used to provide a consistent

timestamp for devices that can't manage timestamps well or keep them well

synchronized

• Performing IPV6 to IPV4 translation

• Collecting other flat-file-based data from the local network that is relevant and

associated with the IoT data

• Acting as a local cache for firmware or other software updates

9.3.3 Cloud Processing

After an IoT project is up and running, many devices will be producing lots of data. Those require an

efficient, scalable, affordable way to both manage those devices and handle all that information.

When it comes to storing, processing, and analyzing data, especially big data, the cloud represents the

most appropriate location.

In order to provide an example on the services provided by the cloud for IoT, the following diagram

shows the various stages of IoT data management in the Cloud, focusing on the specific case of the

Google Cloud Platform.

P a g e | 234

Figure 9-4: Cloud processing operations in the case of Google Cloud (Source: Google [80]).

9.3.3.1 Dataflow

Dataflow is developed for managing the high-volume data processing pipelines required for IoT

scenarios, as it provides a set of functionalities to enable processing data in multiple ways, including

batch operations, extract-transform-load (ETL) patterns, and continuous, streaming computation.

9.3.3.2 IoT Core

The cloud will typically offer a native service for collecting and managing IoT data. This functionality is

sometimes defined as Cloud IoT Core service [81].

The Cloud IoT Core provides a secure MQTT (Message Queue Telemetry Transport) broker for devices

managed by the IoT Core. As previously discussed in this course, this efficient binary industry standard

allows for constrained devices to send real-time telemetry as well as immediately receive messages

sent from cloud to device by using the configuration management feature. The IoT Core MQTT broker

directly connects with the Pub/Sub service.

9.3.3.3 Publish/Subscribe Services

P a g e | 235

Publish/Subscribe services (Pub/Sub) provide a global framework for managing message exchange

among the components of an IoT service. Publish/subscribe service operate through the creation

of topics for streams or channels, and to enable different components of the IoT application

to subscribe to specific streams of data. The advantage of this approach is that subscription is

performed without explicitly needing to construct subscriber-specific channels on each device.

Pub/Sub services can also be used to connect to other cloud services, helping to connect ingestion,

data pipelines, and storage systems.

Another important feature of Pub/Sub services is that they can act like a “cushion” and rate leveller

for both incoming data streams and application architecture changes. Pub/Sub scales to handle data

spikes that can occur when swarms of devices respond to events in the physical world, and it buffers

these spikes to help isolate them from applications monitoring the data.

9.3.3.4 Cloud Monitoring and Cloud Logging

Cloud Monitoring and Cloud Logging are two services that enable service providers to control the

operating infrastructure. The corresponding information is provided by such services through their

dedicated interfaces.

9.3.3.5 Pipeline processing tasks

Pipelines implement a data management paradigm similar to how parts are managed on a factory line.

In particular, after data arrives in the Cloud, they provide the following services:

• Transforming data. These services is used to convert the data into another format, for

example, converting a captured device signal voltage to a calibrated unit measure of

temperature.

• Aggregating data and computing. Aggregation enables to manage large amounts of data in a

unified way, for example enabling to detect outliers or erroneous samples. By adding

computation to your pipeline, it is possible to apply streaming analytics to data while it is still

in the processing pipeline.

• Enriching data. Some pipeline tasks can be used to combine device-generated data with other

metadata about the device, or with other datasets, such as weather or traffic data, for use in

subsequent analysis.

• Moving data. Those services allow to store the processed data in one or more final storage

locations.

P a g e | 236

9.3.3.6 Analytics

In several cases, performing analytics on data obtained through IoT sources the final purpose of

deploying IoT in the physical world. This requires proper analytics services capable of analyzing

streamed data in a processing pipeline, while the data accumulates. Over time, such data provides a

rich source of information for looking at trends, and it can be combined with other data, including

data from sources outside of the IoT devices.

9.4 Storage

It is worthy to dedicate a separate sub-section to the storage of IoT data, and in particular to the

existing databases that might be used to efficiently store and operate IoT data.

Indeed, managing and organizing access to a massive amount of data represents one of the key issues

in the design of IoT applications. IoT is about data, services, connectivity: data are gathered by objects,

transferred, analyzed, and translated into services. In such scenario, large-scale IoT deployments can

produce huge amounts of data, leading to the concept of big data.

The word big-data is currently used to identify: (i) data sources with specific characteristics, as well as

(ii) novel technologies to manage huge amounts of data.

In facts, big data cannot be managed using conventional technologies of information systems, because

of its main characteristics:

• Volume: in the order of Petabytes

• Velocity: data is produced at high rate

• Variety: big data is heterogeneous (text, image, video, etc)

• Value: valuable information is stored within such huge “container” and it can be extracted

using proper IT techniques

In terms of storage and processing, we might consider IoT and big data highly related concepts.

Therefore, IoT might use big data storage concepts in order to address this issue.

An example of big data IoT application can be the Energy@Home project [82] by Telecom Italia, which

was aimed at collecting data by smart plugs installed in customers’ houses for implementing data

classification (i.e. identify the appliance consuming power), profiling (i.e. identify users’ habits),

prediction (i.e. predict energy consumption) and scheduling (i.e. intelligent ON/OFF schedule).

In general, the unifying characteristic of IoT data is that they represent a time-series: a sequence of

timestamp plus values. This has the following implications:

P a g e | 237

• Data are immutable.

• Writing data is done by “appending” to previous values.

• Reading is performed for contiguous sequences of samples data.

• Data is highly compressible.

• Deleting usually happens across large time period.

• High precision might be desired for a short period of time, but single values are not so

important.

The following sub-sections will provide some databases models which might be used to store IoT data.

9.4.1 SQL Databases

Relational Database Management Systems (RDBMS) are a family of databases based on a relational

model. They are also called SQL databases, since they employ the SQL querying language.

A relational database is a scheme-based (structured) database, with the following components: tables

(relations), primary keys, foreign keys, NULL values.

A time series implemented in a relational database would lead to a structure such as the one described

in the following table.

Time Time series ID Value

16:17:00 101 10.1

16:17:05 102 0.5

16:17:10 103 2.3

16:17:15 104 1.2

The main problems of SQL databases for IoT are:

• Scalability (i.e. need to store large amount of time-series data)

• Performance (e.g. support for range-based operations)

9.4.2 NoSQL Databases

An alternative is to use not relational databases, or NoSQL Database Management Systems. NoSQL

databases represent a set of tools and logic models, alternative or complementary to RDBMS. They

do not employ the SQL language and provide a scheme-less (un/semi-structured) database.

There are different families of not relational databases, including: Key-values DB, Document-based

DB, Column-based DB, Graph-based DB [83].

P a g e | 238

NoSQL databases have achieved a large popularity thanks to their high performance, flexibility in

scaling, and high availability. In this framework, the most popular NoSQL databases for IoT services

are: Redis, Cassandra, MongoDb, Couchbase and Neo4j.

9.4.3 Time Series Databases

Time-series Databases are dedicated DBMS optimized for managing large volumes of time-series data.

They provide:

• Optimized data storage and sharding

• Operational support (e.g. range-based queries)

• Time-granularity management

• Time-series analytics and mining

Time series databases are gaining popularity in the last months, most likely because of the need of IoT

for dedicated databases (Figure 9-5).

Figure 9-5: Database popularity changes in the last months (Source: [84])

As an example of a popular solution in this area, InfluxDB [85] is an open-source time-series database

(InfluxData) that supports an SQL-like query language (InfluxQL) (<1.8) and a JS-like query language

(Flux) (>=1.8). It provides GUI, Command Line Interface (CLI) and HTTP APIs and it supports distributed

deployments. Moreover, it eases integration with time-series tools for data acquisition, analytics and

visualization (e.g. Telegraf, Grafana).

InfluxDB is based on the following parameters/fields:

P a g e | 239

• Time-Structured Merge Tree (TSM): data structure used to contain sorted, compressed series

data.

• Time Series Index (TSI): it can address millions of unique time series, regardless of the amount

of memory on the server hardware.

• Automatic downsampling and data retention procedures.

• Timestamp: in RFC3339 UTC format (yyyy-mm-ddThh:mm:ssZ)

• Field keys: string metadata, similar to column name

• Field values: actual measured data

• Tag-sets: optimal, extra-information about the measurements

o Tag keys: string meta-data, similar to field keys

o Tag values: string values

• Measurement: Container to hold the timestamps, fields and tags (similar to a table in a

RDBMS)

• Buckets: collection of data-points, containing:

o Measurement

o Tag-sets

o Retention policy: period that datapoints are being stored in InfluxDB, which is called

DURATION but also the number of versions that should be kept on the cluster, as

REPLICATION.

P a g e | 240

10 Data Analytics and

Applications

Author(s): Fabrizio Granelli

This Photo by Unknown Author is licensed under CC BY-SA-NC

https://technofaq.org/posts/2017/08/how-data-analytics-affecting-our-everyday-lives/
https://creativecommons.org/licenses/by-nc-sa/3.0/

P a g e | 241

10.1 Data Analytics

Data analytics surely represents an essential feature in IoT services. Nevertheless, probably

due to its novelty, there is no specific methodology to solve this problems of Data Science for

IoT. On one hand, a Data Science for IoT problem is a typical Data Science problem. On the

other hand, there are some unique features that makes IoT services different – for example

in the use of hardware, high data volumes, impact of verticals (see later), streaming data etc.

In principle, the development of a proper methodology for IoT analytics (Data Science for IoT)

should include the unique aspects of the different steps in “traditional” Data Science. The

choice of the model family (ANN, SVM, Trees, etc.) represents only one of several choices to

make, that might include [86]:

a. Choice of the model structure - optimisation methodology (Bootstrap, etc)

b. Choice of the model parameter optimisation algorithm (joint gradients vs.

conjugate gradients)

c. Pre-processing of the data (reduction, functional reduction, log-transform,

etc.)

d. How to deal with missing data (case deletion, interpolation, etc.)

e. How to detect and deal with suspect data (distance-based outlier detection,

density-based, etc.)

f. How to choose relevant features (filters, wrappers, etc.)

g. How to measure prediction performance (mean square error, mean absolute

error, misclassification rate, precision/recall, etc.)

Moreover, the selected methodology should consider or incorporate the unique aspects of

the IoT scenario:

a. Complex event processing: IoT is typically used to analyze and perform actions

in a complex environment, characterized by multiple variables and events with

typically unknown relationships.

b. Need for deep learning approaches: the amount and complexity of the

collected data requires the deployment of deep learning methodologies to

enable data processing and extraction of useful information.

P a g e | 242

c. Anomaly Detection: What is the triggering event, how much has the machine

deviated from the plan, are there any external factors affecting the system

performance, how do I know that I should trust IoT data? Is there a

recommended plan of action? How is the Data visualized? Does the Data have

missing elements? How do we detect failure in other processes?

d. Specific IoT vertical domains (such as Smart Grid, Smart Cities, Smart Energy,

Automotive, Smart factory, etc.) might introduce additional choices or

constraints on the data analytics process.

10.2 Interpretation of IoT Data

Interpretation of the data is an extremely relevant issue in IoT applications. Indeed, IoT

applications will typically generate huge amounts of data, where it is necessary to identify

anomaly or extract information to make the application significant and useful to the clients.

Kalman filters and sensor fusion are common methodologies that can be used to enable

interpretation of IoT data.

Kalman filtering is a data filtering algorithm used to produce estimates of unknown variables

more precise than those based on a single measurement. To perform this task, a Kalman filter

uses a series of measurements observed over time, containing statistical noise and other

inaccuracies. The Kalman filter has numerous applications in technology – including IoT.

In the IoT scenario, Kalman filters are often used in Sensor fusion. Sensor fusion helps to

determine the state (and also the overall context) of an IoT based computing system based

on distributed measurements by several sensors.

Kalman filters can be introduced using an example:

Let’s assume you have a model that predicts river water level every hour (using the usual

inputs). You know that your model is not perfect, and you don’t trust it 100%. So, you want to

send someone to check the river level in person. However, the river level can only be checked

once a day around noon and not every hour. Furthermore, the person who measures the river

level cannot be trusted 100% either. How do you combine both outputs of river level (from

model and from measurement) so that you get a ‘fused’ and better estimate?

In general, in IoT applications, we can state the following:

P a g e | 243

• The system state cannot be measured directly

• The application can collect multiple measurements – each of which might not be 100%

accurate. Then, those need to be fused/combined.

• Fusion across different sensors can mean different things: example: several

temperature sensors, fusion across different Attributes, (example: temperature,

pressure humidity to determine air refractive index), fusion across different domains,

example: different ranges / domains, fusion across different time (Example: Sampling

over space and time)

The reader should note at this stage that sensor fusion does not merely imply ‘adding’ values,

i.e. not just adding temperature values. On the opposite, sensor fusion aims at about

understanding or estimating the overall ‘State’ of a system based on multiple sensors.

Kalman filters are typically used to predict the state of dynamic systems. Dynamic systems

are systems that change or evolve in time according to a fixed rule. For many physical systems,

This behaviour is described by a set of first-order differential equations. This set of input,

output and state variables related by first-order differential equations is called a state-space

representation of a physical system.

In dynamic systems, it is possible to define a minimum set of variables, defined as state

variables, that can fully describe the system and its response to any given set of inputs. In a

state-determined system, given such minimum set of variables xi(t), i = 1,…,n, together with

knowledge of those variables at an initial time t0 and the system inputs for time t ≥ t0, it is

possible to predict the future system state and estimate the outputs for all time t>t0. Several

engineering, biological, social and economic systems can be represented by state-determined

system models, including Internet of Things applications.

In some cases, we might be interested in estimating the covariance (or correlation) between

the two measurements. If the greater values of one variable mainly correspond with the

greater values of the other variable, and the same holds for the smaller values, i.e., the

variables tend to show similar behaviour, and the corresponding covariance is positive. In the

opposite case, when the greater values of one variable mainly correspond to the smaller

values of the other, i.e., the variables tend to show opposite behaviour, and the related

P a g e | 244

covariance is negative. The sign of the covariance therefore shows the tendency in the linear

relationship between the variables.

To summarise, Kalman filters can be used to determine context for IoT systems in the

following way:

• Sensor measurements can generate fragments of context information with varying

degrees of confidence. Such values are fed into the overall context estimation of the

state. Sensors are highly distributed, and their individual performance varies, so it is

likely to experience overlaps and conflicts among such measurements.

• In the typical situation, sensed information from individual sensors will include the

sensor’s confidence level and timestamp.

• The Kalman filter averages a prediction of a system’s state with a new measurement

using a weighted average. In this computation, values with smaller estimated

uncertainty are trusted more. The relative weights between the sensor inputs and

their impact on the overall state are calculated using covariance. This enables the

estimation of a new state of the system.

• This process is repeated every time step, with a new estimate and its covariance

influencing the prediction produced at the following iteration.

10.3 Visualization of Data

Efficient visualization of data might be relevant in an IoT scenario for the following reasons:

• It helps to make real-time decisions by displaying a combination of multiple data

sources into a single insightful dashboard with multi-layered visual data.

• It combines the updated IoT data transmitted from data sensors with the existing data

to analyze and lead to the identification of new business opportunities.

• It enable better support to monitor IoT devices and infrastructure for a clearer

interpretation of the overall IoT data flow.

• It helps to analyse any existing multiple data correlations in real-time.

The following are some examples of data visualization tools commonly used in the IoT

applications.

P a g e | 245

10.3.1 Grafana

Grafana [87] is an open-source data visualization tool, especially built for time-series data. As

described in the previous chapter, time series data are measured over a duration of time.

There are several time-series data storage backends where Grafana supports with specific

labels, data sources.

Grafana offers a visual dashboard which covers multiple functionalities in form of a single and

powerful interface. Several panels in the dashboard are responsible for analyzing the data

and presents the data in different visual formats like heat maps, geo maps, histograms, charts

– Pie/Bar, graphs.

Figure 10-1: The visual interface of the Grafana tool.

10.3.2 Kibana

Kibana [88] is an open-source data visualization tool for analyzing large volumes of log data.

Kibana requires joint operation with Elasticsearch and Logstash, leading to the globally known

ELK stack for log management.

In the Kibana workflow, Logstash is responsible to collect all the data from the remote

sources. Then, these data logs are then pushed and sent to the Elasticsearch. Elasticsearch

acts as the database to the Kibana tool with all the log information. Finally, Kibana tool

presents these log data in the form of pie charts, bar or line graphs to the user.

P a g e | 246

Figure 10-2: The visual interface of the Kibana tool.

10.3.3 Power BI

Microsoft PowerBI [89] is a popular Business Intelligence Tool that provides a detailed analysis

reports for large Enterprises. Power BI comes with a suite of products with Power BI desktop,

mobile Power BI apps and Power BI services for SaaS.

The first step consists of data collection from the external data sources. The ‘Get Data’ option

allows to collect information from various sources including Facebook, Google Analytics,

Azure Cloud, Salesforce etc. It provides ODBC connection to get ODBC data as well.

In Power BI, there are 2 ways to a visualization: (1) by adding from the right-side panel to the

report canvas which is in a table type visualization format, or (2) by simple drag and drop of

value axis under visualization. Once the report is developed, it can be published to web portal

with the help of the Power BI service and then exported in pdf, excel or any preferred format.

P a g e | 247

Figure 10-3: The visual interface of the Power BI tool.

10.4 A case study of a simple sensor, broker, app application deployment

As an example of IoT, let’s consider a simple scenario. In this case, we have one or many

sensors, an MQTT broker and one or more applications. Sensors can measure any relevant

information from the environment (e.g. temperature, humidity, etc.) and provide data in

input to the broker. IoT applications subscribe to the data flows of interest and then analyze

and process the corresponding streams of data.

The MQTT Broker collects data from the sensors (publishers) and provides them to

subscribers. Subscribers can subscribe to multiple topics and receive the corresponding data

flows.

MQ Telemetry Transport (MQTT) is a lightweight broker-based publish/subscribe messaging

protocol designed to be open, lightweight, and easy to implement. It was designed as an

extremely lightweight protocol to allow the application in remote locations with a limited

Internet connection and small low power devices. These principles also turn out to make the

protocol ideal of the emerging "machine-to-machine" (M2M) or "Internet of Things" world of

connected devices, and for mobile applications.

The protocol runs over TCP/IP and typically on port 1883, which is assigned by the Internet

Assigned Numbers Authority (IANA). For using MQTT over SSL, port 8883 is used.

P a g e | 248

A communication example, with a sensor publishing temperature over a topic and a client

subscribed to that topic receiving it, is provided in Figure 10-4.

Figure 10-4: MQTT communication: A sensor connects to the broker and publishes to a topic some
value. Meanwhile, an app has connected to the broker and subscribe to the same topic. So, the broker
forwards the message published by the sensor to the app.

P a g e | 249

11 IoT Security and security

standards

Author(s): Maria Papaioannou

 Georgios Mantas

Claudia Barbosa

Jonathan Rodriguez

This Photo by Unknown Author is licensed under CC BY-NC

http://www.groundreport.com/internet-things-reshaping-online-security/
https://creativecommons.org/licenses/by-nc/3.0/

P a g e | 250

11.1 The Internet of Things (IoT) – An Overview

The Internet of Things constitutes the most recent advancement in the continuing revolution

of computing and communication [90].

``The Internet of Things (IoT) is a term that refers to the expanding interconnection of smart

devices, ranging from appliances to tiny sensors [90].´´ In particular, the IoT enables

innovative communication forms between (i) persons and things, and (ii) things themselves,

by embedding short-range mobile transceivers into multiple gadgets and everyday items.

These days, the Internet, through advanced computing and the cloud systems, supports the

interconnection of billions of devices - both industrial and personal objects. These objects

receive, handle, and deliver sensing data (usually coming from sensor devices), act on their

environment, and may alter themselves, in order to overall manage a larger environment or

system, such as a factory or a town.

The IoT primarily consists of low-bandwidth, low-repetition data capture, and low-bandwidth

data-usage embedded devices [90]. These devices connect and communicate with each other

and deliver data via user interfaces.

11.1.1 Evolution

 With reference to the end systems supported, the Internet has gone through roughly four

generations of deployment culminating in the IoT. As detailed in [90]:

1. Information technology (IT): IT devices such as PCs, servers, routers, firewalls, bought

by enterprise IT people, primarily using wired connectivity.

2. Operational technology (OT): Machines and electrical devices with embedded IT

manufactured by non-IT companies, such as industrials machines, medical machinery,

SCADA (supervisory control and data acquisition), and process control, bought by

enterprise OT people, primarily using wired connectivity.

3. Personal technology: Personal devices such as smartphones, tablets, and eBook

readers bought as IT devices by consumers/organizations, exclusively using wireless

connectivity and often multiple forms of wireless connectivity.

P a g e | 251

4. Sensor/actuator technology: Single-purpose devices bought by consumers, IT, and OT

people exclusively using wireless connectivity, for a wide of applications and as part

of larger systems. The fourth generation is marked by using billions of interconnected

embedded devices, and thus is typically considered as the IoT itself.

11.1.2 IoT Components

 The key components of an IoT-enabled device are the following:

• Sensor: A sensor device is responsible for gathering information of any kind of

systems, for instance, biological, physical, or chemical systems, and delivering an

electronic signal (i.e., as a digital signal, or an analog voltage level) that is related to

the observed parameters. Afterwards, this output – i.e., the electronic signal, is usually

input to a management component like a microcontroller.

• Actuator: An actuator receives an input from a controller in the form of an electronic

signal and responds to this input by interacting with its environment. The product of

this interaction is an effect on a certain parameter of biological, physical, or chemical

entity or system that the actuator is been a part of.

• Microcontroller: The microcontroller is a deeply embedded device and thus provides

the “smart” or intelligence in a smart device.

• Transceiver: A transceiver consists of all the necessary electronics to transmit and

receive data. The majority of IoT devices include a wireless transceiver. Typically, the

transceivers are capable to communicate employing Wi-Fi, ZigBee, or other wireless

technologies.

• Radio-frequency Identification (RFID): RFID is increasingly becoming an enabling

technology for the IoT. RFID utilizes radio waves to identify objects. The tags and the

readers constitute the main components of an RFID system. RFID tags may be in a

wide variety of shapes, sizes, functionalities, and costs, and they are small

programmable devices mainly used for object, animal, and human tracking. On the

other hand, RFID readers acquire and on occasion rewrite information stored on RFID

tags that come within operating range – from a few inches up to several feet. Typically,

RFID readers are connected to a computer system. The computer system receives,

P a g e | 252

records and formats the acquired data for further processing or applications in

general.

11.1.2.1 Edge

The edge of a classic enterprise network includes a number of IoT-enabled devices. These

devices can be sensors and maybe actuators. The devices are usually organized in a network

structure and are sometimes capable of communication with one another. An example would

be a cluster of sensors that send their data to another sensor. The latter sensor may aggregate

the data before transmitting them to a higher-level device. Also, an edge network may include

gateway devices. Each gateway device acts as a bridge to enable the connection between the

IoT-enabled devices and the higher-level communication networks. Since the communication

networks and the IoT devices may use different protocols, the gateway performs the

necessary transformations and may also execute a basic data aggregation function.

11.1.2.2 Fog

In many IoT deployments, a distributed network of sensors may be capable of producing a

large amount of data. For example, offshore oil fields and refineries can create a terabyte of

data every day. Another example is that of an airplane producing multiple terabytes of data

every hour. One method for these data is to keep it permanently (or at least for a long time)

in central storage, ensuring that it can be accessed by IoT applications. However, it is

sometimes preferred to perform as much data processing close to the sensors as possible.

This type of processing is often referred to as processing done at the edge computing level.

The purpose is the transformation of the sensor data into information suitable for storage

and higher-level processing. Specifically, the data transformation can result in a significant

decrease of the initial high volume of sensor data. Some of the fog computing operations are

described below:

• Evaluation: Data can be evaluated based on different criteria such as whether it

should be sent to a higher-level entity device for processing.

• Formatting: Data can be reformatted as this can improve efficiency of higher-level

processing.

• Expanding/decoding: Handling cryptic data with additional context (such as the

origin).

P a g e | 253

• Distillation/reduction: Data can be filtered and summarized. Only the important

information will be kept to reduce the impact that the transmitted data will have on

the network traffic and the higher-level processing systems.

• Assessment: Information can be assessed to decide if it indicates a threshold or alert.

The type of decision may also result in redirecting data to additional destinations.

In general, fog computing devices can be found near the edge of the network of IoT sensors

and other data-generating devices. This contributes to the fact that some basic processing

operations of the produced data can be performed close to the data source. At the same time,

this means reduced resource requirement for the higher-level processing systems.

Fog computing and fog services are some of IoT ‘s distinct characteristics. As a philosophy, fog

computing and cloud computing stand in opposite sides. On the one hand, cloud computing

is synonymous to massive, centralized storage and processing resources. Utilizing cloud

networking facilities, the storage and resources are available to distributed customers. On the

other hand, fog computing entails massive numbers of individual smart objects that

communicate with each other through fog networking facilities. These objects perform

processing and storage operations close to the IoT edge devices. The activity of thousands or

millions of smart devices raises multiple issues, pertaining to security, privacy, network

capacity constraints and latency requirements. Fog computing is capable of addressing those

issues. The term “fog computing” originates from the observation that fog tends to hover low

to the ground, whereas clouds are high in the sky.

11.1.2.3 Core

The core network is often called as a backbone network. Its purpose is the interconnection

of geographically dispersed fog networks. Furthermore, it can provide access to networks

outside of the enterprise network. Typically, in order to achieve its purpose, the core network

utilizes very high-performance routers, high-capacity transmission lines, and multiple

interconnected routers to increase redundancy and capacity. The increased redundancy is

also achieved if a part of the core routers is purely internal without acting as edge routers.

Additionally, the core network may communicate with high-performance, high-capacity

servers such as large database servers and private cloud facilities.

11.1.3 IoT Security

P a g e | 254

IoT may be considered the most complex and at the same time most undeveloped area of

network security [90].

Typically, the centre of the IoT network consists of all the application platforms, databases,

data storage servers, and network and security management systems. These central systems

are in charge of collecting information acquired by the sensor devices and sending control

signals to actuators. On top of that, they are also responsible for the overall management of

the IoT devices and their communication networks. Furthermore, the edge of the IoT network

consists of IoT-enabled devices. Some of these devices might be quite simple constrained

devices, while others might be more intelligent unconstrained devices. In addition, gateways

may perform networking services on behalf of IoT devices like protocol conversion.

Figure 11-3 illustrates a number of typical scenarios for interconnection and the inclusion of

security features. The shading in Figure 11-3 indicates the systems that support at least some

of these functions. Typically, gateway devices are the elements of the IoT networks that

usually will implement secure functions, such as TLS and IPsec. On the contrary,

unconstrained devices may or may not implement security capabilities. Constrained devices

generally have limited or no security features. Therefore, gateway devices enable secure

communication between the gateway and the central systems (e.g., application platforms and

data storage servers). However, any constrained or unconstrained IoT device connected to

the gateway is beyond the zone of security established between the gateway and the central

systems. In some cases, unconstrained devices can communicate directly with the central

systems and they might support security functions. However, constrained devices that are

not connected to gateways have no secure communications with the devices of the central

system.

P a g e | 255

Figure 11-1: IoT Security: Elements of Interest [90]

11.1.3.1 Patching Vulnerability

In 2014, security expert Bruce Schneier stated that we are at a crisis point regarding the

security of embedded systems, and particularly the IoT devices. De facto, the Internet of

Things has increased rapidly leading to an increasingly need for embedded devices. Therefore,

the electronics manufacturers had powerful incentives to produce their chips - with the

firmware and software, as cheaply and quickly as possible. Their primary focus was on the

price and the feature of the chip. In particular, they focused of the functionality of the device

itself and they neglect anything related to the software and firmware of the chip. As a result,

the embedded devices are riddled with vulnerabilities and so far, there is no efficient way to

patch them. Since the information about how to patch the vulnerabilities is inadequate, and

apparently the end user may have no means of patching the system, the hundreds of millions

of interconnected IoT devices are vulnerable to malicious attacks. For instance, an attacker

may take control of an IoT sensor and insert false data into the whole IoT network. In the case

P a g e | 256

of the actuators, where the attacker can potentially affect the operation of devices like a

machinery, the consequences of a potential security attack are much graver.

11.1.3.2 IoT Security and Privacy Requirements

ITU-T Recommendation Y.2066 (Common Requirements of the Internet of Things, June 2014)

sets a list of security requirements for IoT networks. This list constitutes a useful baseline for

understanding the scope of a suitable and efficient security implementation for an IoT

deployment. These requirements are covering all the functional operations of an IoT system

that are capturing, storing, transferring, aggregating, processing the data of things, as well as

providing services which involve things. On top of that, they are also related to all the IoT

actors. The requirements are the following, as defined in ITU-T Recommendation Y.2066:

• Communication security: Secure, trusted, and privacy protected communication

capability is required, so unauthorized access to the content of data can be prohibited,

integrity of data can be guaranteed, and privacy-related content of data can be

protected during data transmission or transfer in IoT.

• Data management security: Secure, trusted, and privacy protected data

management capability is required, so unauthorized access to the content of data can

be prohibited, integrity of data can be guaranteed, and privacy-related content of data

can be protected when storing or processing data in IoT.

• Service provision security: Secure, trusted, and privacy protected service provision

capability is required, so unauthorized access to service and fraudulent service

provision can be prohibited and privacy information related to IoT users can be

protected.

• Integration of security policies and techniques: The ability to integrate different

security policies and techniques is required, so as to ensure a consistent security

control over the variety of devices and user networks in IoT.

• Mutual authentication and authorization: Before a device (or an IoT user) can access

the IoT, mutual authentication and authorization between the device (or the IoT user)

and IoT is required to be performed according to predefined security policies.

• Security audit: Security audit is required to be supported in IoT. Any data access or

attempt to access IoT applications are required to be fully transparent, traceable and

P a g e | 257

reproducible according to appropriate regulation and laws. In particular, IoT is

required to support security audit for data transmission, storage, processing, and

application access.

Figure 11-2: IoT Gateway Security Functions [90]

There is no doubt that the gateway is a key element in providing security in an IoT

deployment. Therefore. ITU-T Recommendation Y.2067 (Common Requirements and

Capabilities of a Gateway for Internet of Things Applications, June 2014) details specific

security functions that the gateway should implement, some of which are illustrated in Figure

11-4. These consist of the following, as stated in ITU-T Recommendation Y.2066:

• Support identification of each access to the connected devices.

• Support authentication with devices. Based on application requirements and device

capabilities, it is required to support mutual or one-way authentication with devices.

With one-way authentication, either the device authenticates itself to the gateway or

the gateway authenticates itself to the device, but not both.

• Support mutual authentication with applications.

P a g e | 258

• Support the security of the data that are stored in devices and the gateway, or

transferred between the gateway and devices, or transferred between the gateway

and applications. Support the security of these data based on security levels.

• Support mechanisms to protect privacy for devices and the gateway.

• Support self-diagnosis and self-repair as well as remote maintenance.

• Support firmware and software update.

• Support auto configuration or configuration by applications. The gateway is required

to support multiple configuration modes, for example, remote and local configuration,

automatic and manual configuration, and dynamic configuration based on policies.

• It is worthwhile to mention that when security services for constrained devices are

required, some of the detailed requirements may be challenging to deploy. For

instance, the gateway should support security of data stored in devices. However, this

may be impractical to achieve when the constrained device has no encryption

capability.

• Finally, the Y.2067 requirements also detail a number of requirements related to

privacy. In Fact, privacy constitutes one additional critical area with the rapid

widespread deployment of IoT-enabled things in environments like homes, vehicles,

and even human beings. As more and more things are getting interconnected,

governments and private enterprises will be able to gather huge amounts of sensitive

personal information, such as medical data, location information, and application

usage.

11.1.3.3 An IoT security framework

P a g e | 259

Figure 11-3: IoT Security Environment [90]

Cisco created a framework about IoT security that can be utilized as a guide to the IoT security

requirements. The security environment regarding the logical structure of an IoT is depicted

in figure 11-5. The IoT model constitutes a simpler version of the World Forum IoT Reference

Model and its levels are the following:

• Smart objects/embedded systems: Contains sensors, actuators and other embedded

systems located at the edge of the network. This is where most of IoT vulnerabilities

lie, since the devices may have to be placed in a physically insecure environment and

operate for years. Among the various issues, network managers need to consider

availability, authenticity and integrity of the sensor data and protection of actuators

and other smart devices from unauthorized use as well as privacy and protection from

eavesdropping.

• Fog/edge network: This level relates to the wired and wireless interconnection of IoT

devices. Also, this level may include a certain degree of data processing and

consolidation. A great deal of issues is caused due to the variety of network

P a g e | 260

technologies and protocols of the different IoT devices. Thus, the development and

enforcement of a uniform security policy is necessary.

• Core network: This level provides data connections between the network center

platforms and the IoT devices. Although the security concerns in this level are

commonly found in traditional core networks, the security burden increases due to

the large number of endpoints to interact with.

• Data center/cloud: This level involves the application, network and data storage

management platforms. At this level, no new security issues emerge because of IoT,

except form the need to interact with a vast number of individual endpoints.

 The four-level architecture of the Cisco model contains four general security traits that

extend to multiple levels:

• Role-based security: In RBAC systems, access rights are assigned to roles and not to

individual users. Those users acquire various roles, either statically or dynamically,

based on their responsibilities. RBAC techniques are commercially used in cloud and

enterprise systems and in general, they constitute a well-known and useful tool to

manage the access to IoT devices and their generated data.

• Anti-tamper and detection: This function is essential to the IoT device, the fog

network and the core network levels. The reason is that some components of these

levels may physically lie outside the area that is covered by the physical security

measures of the enterprise.

• Data protection and confidentiality: These functions extend to all levels of the

architecture.

• Internet protocol protection: It is important to protect data in motion from snooping

and eavesdropping.

Figure 11-5 maps specific security functional areas across the four layers of the IoT model.

A secure IoT framework is also proposed by the Cisco model. The framework describes the

components of a IoT security facility and encompasses all the IoT levels. The four components

are presented below:

• Authentication: Contains the elements that identify the IoT devices and then

determine the type of access. Contrary to typical enterprise network devices, where

P a g e | 261

human credentials (e.g., usernames and passwords or tokens) are used for

identification, the IoT endpoints must be designed in order to not require human

interaction. Examples of identifiers, that can be used, are RFID, x.509 certificates, or

the MAC address of the endpoint.

• Authorization: Determines a device ‘s access rights throughout the network fabric.

This layer handles access control. In combination with the authentication layer,

necessary parameters are set to allow the information exchange between different

devices and between devices and application platforms. These functions are essential

to permit the operation of IoT-related services.

• Network enforced policy: Includes all elements that ensure that endpoint traffic is

routed and transported securely over the infrastructure, whether control,

management, or actual data traffic is concerned.

• Secure analytics, including visibility and control: Encompasses all the elements for

central management of IoT devices. The first function to consider relates to visibility

of IoT devices, meaning that central management services perceive in a secure way

the existence of the various IoT devices as well as the identity and attributes of each

device. By utilizing this visibility, the central management services can perform

operations on the IoT devices such as configuration, patch updates, and threat

countermeasures.

Moreover, this framework considers as important the concept of trust relationship. Trust

relationship relates to the situation where the two partners to an exchange have confidence

in the identity and access rights of the other. The authentication mechanisms initially

establish a level of trust and the authorization mechanisms increase this level of trust. As per

the example of the Cisco model, a car may form a trust relationship with a different car of the

same vendor. Through this trust relationship, the cars may only be allowed to exchange their

safety capabilities. However, in the case that the same car establishes a trust relationship with

its dealer ‘s network, additional information such as the car ‘s odometer reading and last

maintenance record may be permitted to be shared.

P a g e | 262

11.2 Baseline Security Recommendations for IoT

11.2.1 Security considerations

As time passes, we are becoming increasingly dependent on smart, interconnected devices

for a lot of tasks in our everyday lives. Nevertheless, the same devices or “things” can be the

target of attacks and intrusions. The attacks can cause the malfunction of the device and

endanger our personal privacy and public safety. Thus, it is evident that security is one of the

main IoT issues, that should be seriously considered together with safety. These two matters

are always closely connected with the physical world. Furthermore, one more issue concerns

the administration of IoT devices, meaning who will be the supervisor and manage the

devices. The difficulty of the administration task can be better understood, considering the

inherent complexity and diversity of the IoT ecosystem and its scalability issues.

There are a lot of different concerns that limit the consolidation of secure IoT ecosystems.

Below, some of these concerns are presented:

• Very large attack surface: IoT-related risks and threats are many in number and are

constantly changing. Also, IoT devices and services affect citizens’ health, safety and

privacy since devices gather, exchange and process data from various sources

sometimes including sensitive data. Because of the afore-mentioned, the attack range

related to IoT is extremely wide.

• Limited device resources: Technical constraints in IoT means that conventional

security practices cannot be applied as they are but significant reengineering will be

required. A characteristic of a majority of IoT devices is their inherent limited

capabilities as far as processing, storage and energy supply are concerned. Therefore,

advanced security controls cannot be implemented.

• Complex ecosystem: One more reason that security concerns regarding IoT are

enhanced is that IoT is often depicted as a collection of independent devices. In reality,

it should be visualized as a large and diverse ecosystem that includes devices,

communications, interfaces and people.

• Fragmentation of standards and regulations: IoT security concerns are additionally

complicated due to the fact that standards and regulations about IoT security

P a g e | 263

measures are slowly adopted and simultaneously new technologies are constantly

emerging.

• Widespread deployment: With the exception of commercial IoT applications, Critical

Infrastructures (Cis) have recently started to migrate toward Smart ones. This is

achieved by implementing IoT on top of legacy infrastructures.

• Security integration: The potentially opposing viewpoints and requirements from all

involved stakeholders complicate matters relating to security integration. An instance

of that would be IoT systems with different authentication methods, which should be

able to communicate and operate with each other seamlessly.

• Safety aspects: The presence of actuators or other devices which operate on the

physical world makes safety aspects very relevant in the IoT context. Examples, such

as the recent cybersecurity attacks on connected vehicles, proved that security threats

can easily turn into safety threats.

• Low cost: As IoT and its advanced functionalities are employed in several sectors, the

potential for considerable cost savings is further highlighted. The reduced costs can

be achieved by implementing features such as data flows, advanced monitoring, and

integration. However, the low cost of IoT devices and systems can become an

important obstacle in implementing security solutions. Manufacturers tend to care

more about decreasing production costs. As a result, security features become more

limited and product security possibly cannot protect against specific IoT attacks.

• Lack of expertise: Since the IoT domain is a comparatively new one, not a lot of people

possess the suitable skillset and experience in IoT cybersecurity.

• Security updates: It is extremely challenging to apply security updates to IoT systems.

IoT User interfaces, in their majority, do not allow traditional update mechanisms.

Securing those mechanisms, as well as implementing Over-The-Air updates, is a really

difficult task.

• Insecure programming: The “time to market” pressure for products of the IoT domain

is higher compared to other domains. Consequently, limitations are imposed on the

efforts to integrate security and privacy into the design of IoT devices. More emphasis

is directed towards the functionality of the devices rather than their integrated

security. This behavior is also enhanced sometimes due to budget issues.

P a g e | 264

• Unclear liabilities: The assignment of liabilities is unclear. Therefore, in case of

security incidents, there are many ambiguities and conflicts, which are further

enhanced due to the wide and complicated supply chain related to IoT.

11.2.2 Challenge of defining horizontal baseline security measures

ENISA together with the vast majority of the experts interviewed agree that studying IoT

security in a horizontal way is an extremely complex task. The study of the security measures

and the impact of the security threats should take into account the various assets, which differ

based on the specific application and usage scenario.

Each IoT environment requires a risk assessment to be carried out in order to understand the

threats of the various assets, define the plausible attack scenarios and associate them with

the context of the specific IoT service which will indicate the critical hazards and the ones that

can be tackled. Therefore, it is easy to perceive the intricacy of approaching the IoT in a

horizontal way, in contrast to dealing with a specific IoT problem vertically such as Smart Cars,

Smart Airports, Smart Homes, Intelligent Public Transport etc.

Despite the above-mentioned, this section considers the horizontal aspects of IoT that are

observed across vertical sectors and focuses on defining baseline security measures for IoT

across Critical Information Infrastructures. Therefore, this section compliments the actions of

ENISA in the vertical sectors and shows a holistic approach towards IoT security.

P a g e | 265

Figure 11-4: IoT High Level Reference Model [91]

11.2.3 Security measures and good practices

In this section, security measures and good practices are listed in detail. These measures and

practices aim to tackle the threats, weaknesses and risks associated with IoT devices and

environments. They were defined while taking into account the various IoT environments and

deployments that they could be applied. Therefore, a wide range of security matters, such as

security by design, data protection, risk assessment and others, is covered. The list of security

measures / good practices of this section is the result of a very extensive and thorough

desktop research. The research considered different security guidelines, standards, etc.

The security measures and good practices can be divided into several security domains. The

purpose of this split is the coverage of every IoT environment horizontally and the

classification of the security measures based on the IoT ecosystem that they apply. Below,

the proposed security domains are presented:

P a g e | 266

• Information System Security Governance & Risk Management: Includes security

measures relating to information security risk analysis, accreditation, policy, human

resource security and indicators and audit.

• Ecosystem Management: Includes security measures relating to ecosystem mapping

and ecosystem relations.

• IT Security Architecture: Includes security measures relating to system configuration,

system segregation, asset management, cryptography and traffic filtering.

• IT Security Administration: Includes security measures relating to administration

information systems and administration accounts.

• Identity and access management: Entails security measures relating to identification,

authentication and access rights.

• IT security maintenance: Entails security measures relating to IT security maintenance

procedures and remote access.

• Physical and environmental security

• Detection: Entails security measures relating to detection, logging and log analysis and

correlation.

• Computer security incident management: Entails security measures relating to

system security incident report, incident analysis and incident response.

• Continuity of Operations: Entails security measures relating to business continuity

management and disaster recovery management.

• Crisis Management: Entails security measures relating to crisis management process

and organization.

As it was stated earlier, the proposed security domains arrange the security measures

according to the area of IoT ecosystem that they apply to. Except the area of application, the

security measures can be classified based on their nature. The first category is policies that

must be considered during the devices’ development. The next category consists of

organisational business measures and employees that should be adopted by the organisation.

The last category refers to the technical measures to limit the potential risks that target the

IoT devices and other elements of the IoT ecosystem. Thus, the identified IoT baseline security

measures are placed into the three categories and are presented below:

• Policies (PS)

P a g e | 267

• Organisational, People and Process measures (OP)

• Technical Measures (TM)

11.2.3.1 Policies

The first category of security measures is the policies relating to information security and how

to make it more concrete and robust. The policies need to contain well documented

information and they should cover all of the organisation’s activity.

Additionally, it should be mentioned that concerning the security and privacy by design, the

security measures need to take into account the unique traits and context that the IoT device

or system is deployed in. For example, different specifications are considered when an IoT

device is used at a home environment, in comparison to a critical infrastructure. When

applying specific security measures, it is always worth keeping in mind that the cyber risk

associated to IoT depends highly on context.

11.2.3.2 Organisational, People and Process measures

It is important for all businesses to have organisational criteria for information security. The

established personnel practices should promote adequate security and ensure that processes

are safely managed and that information is safely used. In addition, organisations need to

make sure that contractors and suppliers are responsible and accountable for the functions

considered. In case of a safety incident in the organisational, everyone in the organisational

should be prepared, understanding what they are responsible for, how to evaluate the

incident and how to respond to it.

11.2.3.3 Technical Measures

The security measures should take into consideration the technical elements to reduce the

vulnerabilities of IoT. While there are horizontal technical measures that can be introduced

across multiple vertical sectors/CIIs, the unique traits of each vertical means that more

specific measures can be employed for each vertical/CII. An instance of these unique traits is

scalability, meaning that the large amount of involved devices may point towards specific

measures that should be applied at the level of specialised architectural components, e.g.

gateways.

11.2.4 Gaps analysis

P a g e | 268

In this section, the main gaps of cyber security in IoT are analysed. Before addressing cyber

security in IoT, it is necessary to identify and define the gaps, namely how much the present

state deviates from the desired state. This deviation can be used to determine solutions to

close those gaps.

11.2.4.1 Gap 1: Fragmentation in existing security approaches and regulations

Currently, there is neither an established EU-wide approach nor a common multi-stakeholder

model regarding cyber security in IoT. Interviews with experts have shown that most of them

identified the deficit of concrete security frameworks and the breadth of security

considerations as large obstacles for the enhancement of security. Thus, each company or

manufacturer has its own approach when applying security features into IoT. This means

standards and good practices, that could guide the adoption of IoT security measures, are

slowly embraced. In this context, it could be more beneficial if initiatives were established to

stimulate the development of security in private companies. Additionally, it is crucial that

both the public and private sectors understand that security is a shared responsibility. It does

not only concern a single company, manufacturer, customer or IT professional, but rather

everyone involved. One more obstacle for the development of IoT security measures is the

fragmentation of regulations. There is no regulation which enforces the employment of

security measures and protocols in the various levels of an IoT ecosystem, such as the devices,

network etc. Establishing such regulations could lead to a more complete integration of safety

and security in the development lifecycles. On the other hand, creating a common standard

for all cases might hinder innovation and research in the area. As it was stated previously,

different applications areas may have different security requirements and this should always

be kept in mind.

Furthermore, the issue of unclear liabilities needs to be dealt with. The responsibilities of

everyone should be defined and enforced in order to overcome the existing problem of non-

responsibility, both moral and legal. As different manufactures and parties keep developing

and operating the various elements of an IoT ecosystem, a perfect isolation between these

elements will unavoidably be formed. Thus, it is necessary to determine and clarify the liability

of each actor in case that a security incident occurs.

11.2.4.2 Gap 2: Lack of awareness and knowledge

P a g e | 269

A knowledge gap exists as far as the move towards connected and interdependent systems

and devices is concerned. When interviewing with IoT experts, variations in fundamental

terminology were observed. One instance concerns the concepts of safety and security,

where security experts have adapted to the term of “business IT” security, but not that of IoT

security.

An overall lack of awareness in relation to the need of security in IoT devices can be observed.

Additionally, a majority of IoT consumers do not understand their IoT devices and lack

knowledge about the threats these devices are exposed to. This may lead to devices not being

updated, which increases the possibilities of potential security breaches.

Moreover, companies need to update their employees in good security practices, since

technological expertise is not necessarily the same as security expertise. Generally,

consumers, developers, manufacturers and others need to be educated about the IoT use, its

associated security risks and how everyone should prepare themselves. Also, security

awareness can be raised with training in both safety and cyber security.

Developers and manufactures could avoid many security events if they knew about the risks

affecting not only the IoT devices but also the whole IoT environment. This is necessary to

raise awareness about existing threats and risks and to learn how to prevent, protect and act

when a security incident happens.

11.2.4.3 Gap 3: Insecure design and/or development

Many studies have focused on the design and development concerns of IoT security. While

interviewing experts, the findings of these studies were verified. Thus, some important issues

about IoT design and development are presented below:

• No defence-in-depth strategy during the design of the system, such as a secure boot

process, isolation of a Trusted Computing Base, limitation of the number of open

ports, self-protection, etc.

• No security-by-design or privacy-by-design. In some instances, there is information

exchange with a third-party. It should be assured that the information, sent outside of

the IoT environment, is only as much as is strictly needed.

• Lack of communication protection, on internal as well as external interfaces.

P a g e | 270

• Lack of strong authentication and authorisation:

o No validation or signing of firmware updates,

o Software updates without server authentication and file trust verification,

o No secure boot mechanisms.

• Lack of hardening:

o No data execution prevention or attack mitigation technologies used on the

firmware,

o Public vulnerabilities (DNS proxy, HTTP service…) left unfixed,

o Some services are exposed through different entry points, with unnecessary

communication portsleft open – services such as Telnet or ssh are sometimes

bound to all network interfaces,

o Weak passwords policies or default passwords left unchanged,

o Configuration flaws.

• Lack of diagnosis / response capabilities.

11.2.4.4 Gap 4: Lack of interoperability across different IoT devices, platforms and frameworks

In most IoT ecosystems, IoT devices are connected with legacy systems, especially when there

are Critical Information Infrastructures. Moreover, as stated previously, the lack of common

regulation means that companies and manufacturers design IoT devices in their own way.

This leads to the emergence of interoperability issues between devices of different

manufacturers and to the existence of diverse and maybe incompatible security models,

concepts, taxonomies etc. Thus, measures need to be adopted to ensure a proper and secure

interconnection and interoperability between the IoT environment, legacy systems and other

IoT devices produced by third-parties.

A majority of IoT devices employ proprietary protocols created by their manufacturers so that

they can interconnect with devices. Devices of the same manufacturer can communicate in

this way without any problems. However, interconnecting devices from different

manufacturers is an issue. Therefore, standard protocols, that will be supported by all

manufacturers, need to be established in order to enhance interoperability without sacrificing

efficiency or security. In this context, the use of close-source and proprietary protocols should

P a g e | 271

be avoided. Their security cannot be verified and many events have shown that obscurity in

security does not necessarily mean proper security coverage.

In the same spirit, using common frameworks can also raise the efficiency and security of the

IoT devices when there is a need to interconnect multiple devices produced by different

manufacturers.

11.2.4.5 Gap 5: Lack of economic incentives

For IoT manufactures and vendors, functionality and usability are considered as more

significant factors compared to security. They are not interested in spending much money on

security which in many instances is not considered at all. The companies do not dedicate much

budget to security since it is generally believed that there is no immediate return-on-

investment for applying security measures. The reason for this belief stems from the difficulty

of assessing the financial impact of possible security weaknesses.

Moreover, there are not enough economic incentives that would encourage the companies

to improve security. These incentives could have the form of economic benefits (e.g., more

grants to integrate better security in the devices), resources, perceived reputation, etc. The

few existing forms of economic support are limited to very competitive research and

development programs like the H2020 project.

Generally, in the interviews with IoT experts, they acknowledge that the impact of the various

risks, threats and hazards are usually underrated and set aside due to budget issues. Security

concerns are usually addressed after an incident has occurred.

11.2.4.6 Gap 6: Lack of proper product lifecycle management

In general, the lack of safety measures from the design stage is discovered in a later

development stage. The various IoT devices and networks connect with each other and are,

in most times, exposed to the Internet becoming the target of a lot of threats. Consequently,

the product lifecycle of the different assets of a specific IoT environment should be managed

properly.

Since IoT encompasses a large number of products, the vulnerabilities of those products can

affect negatively the entire surface of the traditional supply chain. IoT extends the global

P a g e | 272

attack area and thus, the various devices need to be improved in order to provide their

services consistently and in a secure way through their whole lifecycle.

In this process, the vendors, who design and develop the devices, should take action to add

new security features and characteristics proficiently and cost-efficiently. Nevertheless, this

does not only rely on manufacturers that implement the new features, but also on

organisations that bear the associated costs. A balance between cost and security should be

sustained.

Throughout their lifecycle, the IoT devices should maintain the ability to be updated in order

to ensure that they operate properly and that new vulnerabilities are amended. As stated

previously, most IoT consumers lack knowledge about their IoT devices and their associated

threats which may lead to devices not being updated and increases the possibilities of a

potential security breach.

In addition, the deployment stage is a significant stage in the device lifecycle management.

Best practices to deploy IoT devices can be defined. In these practices, recommendations may

be included about specific configurations of devices and networks or about the necessity to

employ cybersecurity monitoring systems to detect anomalies in the deployed infrastructure.

Figure 11-5: High-level recommendations to improve IoT cybersecurity [91]

P a g e | 273

11.3 Guidelines for Securing the Internet of Things: Secure supply chain for

IoT

11.3.1 Supply chain reference model for IoT

The IoT supply chain includes the actors, processes and assets that participate in the

realization (e.g., development, design, maintenance, patch management) of any IoT device.

This study considers the supply chain for IoT is composed of two main aspects: the physical

aspect and the logic aspect. The physical supply chain relates to all the physical objects (e.g.,

devices, electronic components, appliances) moved through the supply chain phases, as well

as the associated manual processes (e.g., manual assembly, distribution processes). The logic

aspect of the supply chain for IoT is associated with the software development and

deployment, network-based communications, and virtual interactions between the IoT

objects and the supply chain stakeholders.

IoT supply chain risks, and more generally IT supply chain risks, are associated with an

organisation’s decreased visibility into, and understanding of, how the technology they

employ in their product or solution is developed, integrated, and deployed. An overview of

the IoT supply chain is provided, presenting all its different stages with a detailed mapping of

them that can be found after the following subsections. This aims to give an approximation

of the stages sequence and the interactions between actors to identify where the security

concerns might arise.

Although the stage layers are presented as being separated, it should be taken into account

that sometimes they are treated as a single entity due to project constraints or other business

realities.

P a g e | 274

Figure 11-6: Supply Chain Reference Model for IoT [92]

P a g e | 275

Figure 11-7: Mapping of the IoT supply Chain [92]

P a g e | 276

11.3.2 Good practices for security of IoT supply chain

Development of good practices for securing the supply chain for IoT is one of the key

objectives of this section. The aim is to provide recommendations for the target audience to

assist in countering and mitigating the threats that might impact the supply chain for IoT.

Recommendations focus on covering the overlapping issues, as most practices are not

effective across all industries and users.

To organise the domains in a logical manner, good practices were classified into the following

three main groups: actors, processes and technologies. Please note that there may exist a

degree of overlap between groups and some good practices could be classified into multiple

categories due to the strongly integrated nature of the supply chain for IoT.

Actors: guidelines related to the principles that shape how actors in the supply chain are

expected to think about, perceive and approach security in the supply chain for IoT; whether

it is in the context of a clearly defined and previously agreed framework or from a personal

standpoint. Industry professionals (e.g. managers, engineers), end users and organizations

can be identified as actors in the supply chain.

Processes: addresses security in the processes involved when an IoT project is designed,

developed, deployed and maintained. These processes are not limited to the context of a

single organization and include interactions between stakeholders, especially in those cases

where trust cannot be clearly established.

Technologies: potential technical measures and elements that could be applied in order to

predict, detect and reduce vulnerabilities and threats. These include hardware components,

design recommendations, techniques, libraries or other software components to support the

process throughout the entire supply chain.

P a g e | 277

11.4 Secure Software Development Lifecycle

11.4.1 IoT Secure Software Development Lifecycle (SDLC)

ENISA establishes good practices regarding IoT security, focusing on software development

guidelines to ensure the security of IoT products and services throughout their lifetime.

Introducing secure development guidelines across the IoT ecosystem, is an absolute necessity

for the improvement of IoT security. The good practices, provided in this section, can help to

achieve security by design, a key recommendation that was highlighted in the Baseline

Security Recommendations section which presented the security of the IoT ecosystem from

a horizontal point of view.

Software consists the core of all IoT systems and services. It empowers their operation and

provides their features. The ways that software supports IoT are multiple such as the IoT

devices firmware, implementations of IoT communication protocols and stacks, Operating

Systems (OSs) for IoT products, Application Programming Interfaces (APIs) supporting

connectivity of different IoT services, IoT device drivers, backend IoT cloud and virtualization

software, as well as software implementation of various IoT service operations. A great deal

of attention is paid to supply chain issues, such as the integration of hardware and software.

Following the secure Software Development Life Cycle (SDLC) guidelines can lead to less

vulnerabilities in IoT and to the development of secure software applications and services.

The establishment of a set of secure development guidelines can contribute to address

several IoT security challenges. Example of those guidelines are the check for security

vulnerabilities, secure deployment, continuous delivery, ensuring continuity of secure

development in cases of integrators etc.

11.4.2 SDLC phases

ENISA strongly encourages security and privacy by design and by default. Accordingly, an

effective way to minimize vulnerabilities in IoT is the development of secure applications,

using the secure Software Development Life Cycle (sSDLC) principles and developers

experienced in secure coding. As it was mentioned previously, the establishment of a baseline

secure development guidelines can contribute to address several IoT security challenges.

P a g e | 278

In this regard, this section is dedicated to the definition of a set of good practices and

guidelines for the various stages of the secure SDLC of IoT solutions. After asking the experts,

most of them considered that the SDLC should consist of six phases, as shown in Figure 11-

11.

Figure 11-8: SDLC phases [93]

The different phases of SDLC aim to deliver effective and efficient systems based on their

design and operational requirements. There are various SDLC models that differ from each

other in the manner that security considerations are incorporated. The overall security of the

IoT ecosystem is enhanced if security is considered across all phases of IoT SDLC and security

measures are applied on the correct assets.

In order to secure the IoT SDLC process, it is important to secure the process across all

elements of the IoT ecosystem, meaning the IoT end devices, communications, cloud backend

and applications for mobile devices. Furthermore, all types of software of these elements

should be evaluated. This includes the end device firmware, IoT services/software

P a g e | 279

implementations, IoT gateways source code, network protocol implementations, API source

code, software running on backend cloud servers etc.

 It is evident that the heterogeneity and complexity of the diverse IoT elements and IoT

software types amplify the number of cybersecurity issues. Thus, it is increasingly necessary

to establish homogenous and good practices for a secure SDLC. Security concerns of the

different IoT SDLC phases are discussed in what follows.

11.4.3 Security in SDLC

When integrating security in a process (like the SDLC), one significant factor that is usually

overlooked, refers to assessment and evaluation. The current cybersecurity state must be first

understood before creating a plan to sustain this state and ameliorate it. In this respect,

Security Maturity Models (SMM) are really useful because they guide organisations to

recognise their level of security based on their intended requirements. The current level of

security, its needs, benefits, and the cost of its support are evaluated, taking into account

particular threats to the regulatory and compliance requirements of an organisation's

industry, the specific risks existing in an environment, and the organisation's threat profile.

Numerous standards function as tools to assess the security of a software project. Examples

of the most widely recognised industry standards include the Common Criteria (CC),

Capability Maturity Model Integration (CMMI), Building Security in Maturity Model (BSIMM),

Security for industrial automation and control systems Part 4-1 - Secure product development

lifecycle requirements (IEC 62443-4-1), or Open Software Assurance Maturity Model

(OpenSAMM).

All six phases of the IoT SDLC share the same core principle of security. Relevant and

applicable controls are required in each phase to assess the security state (e.g. creating

security gates and metrics). Security gates must be implemented to confirm that software

covers all required security conditions before moving forward to next phases. In each phase,

the completion is indicated by severity thresholds that are defined by means of metrics.

Utilizing the metrics, vulnerabilities throughout the development process can be analysed,

detected and corrected.

Complementary to security, the documentation process is a cross-cutting activity that is often

viewed as not necessary during the SDLC process. This is due to multiple reasons, such as the

P a g e | 280

complexity of the IoT solutions, the number of resources involved in a development process,

the module integrations, the IoT interconnectivity, the number of external and internal

components, designs, configurations, requirements etc. Nevertheless, a good documentation

and a documentation management system, that supports the SDLC process, are crucial to

consider it understandable, traceable, and subject to auditing and monitoring.

P a g e | 281

12 Ethics in IoT Networks and

Applications

Author(s): Josephina Antoniou

This Photo by Unknown Author is licensed under CC BY-ND

http://www.paralegalalliance.com/legal-ethics-properly-supervised/
https://creativecommons.org/licenses/by-nd/3.0/

P a g e | 282

12.1 General Principles

This chapter discusses the general principles, including general perceptions and a methodical

approach to understanding ethics in technology. Following the general principles, the current

set of notes focus on IoT Ethics specifically and discuss ethics for developers and users of IoT

technology, as well as a limited view into the relation of IoT Ethics and relevant legislation.

Finally, a specific case study is explored that investigates the ethical aspects of IoT-based

tracking and monitoring applications, discussing quality of experience and ethical concerns.

In-class tasks included in the lesson slides are further explained and discussed within this set

of notes.

This section introduces general ethical principles and relevant approaches and perceptions to

consider in subsequent sections, specifically, for the IoT networks and applications.

12.1.1 General Perceptions of Ethics related to technology and IoT

In 2014, McEwen listed a number of perceptions regarding users’ reactions to the Internet of

Things, in a publication entitled Designing the Internet of Things [94]. Positive perceptions

include the fact the Internet of Things is an exciting and new technology, representing

progress and opportunity to revisit the way people live, by freeing users from tedious tasks

and allowing for more leisure time. Even in the professional realm, the Internet of Things has

the potential to create more interesting and rewarding jobs, to replace ones that are

becoming obsolete. Perceptions of people, however, did not only focus on IoT’s positive

potential. Some people argued that this new technology may eliminate jobs, creating

unemployment. Moreover, increased automation may result in lazy and unhealthy societies,

with people disconnected from tradition. Finally, worries for intrusiveness and lack of privacy

were voiced as negative potential results from the deployment of the IoT technology.

Other authors [95] [96] have posed similar concerns on protection of personal data, data

ownership, data bias and the linked perception of discrimination potential and the need for

justice. The effect of social context on these perceptions is highlighted by the authors of

Engaging with Ethics in Internet of Things [97], in particular, what is valued within different

such contexts. Nevertheless, people are not expected to engage with these social contexts in

the same way, and this results in both positive and negative perceptions, as people tend to

P a g e | 283

engage in one of three ways, according to the article: they are either disengaged, pragmatic

or idealistic.

Often perceptions emerge from lack of understanding of something new. The idea of

intelligent objects that are interconnected to support different services can be confusing or

even intimidating. Therefore, the responsible approach to approaching such new technology

is to promote clarity and understanding with regards to the technology’s impact on people,

life and the environment, and furthermore, promote a responsible and ethical approach to

development and use of IoT that such that perceptions are appropriately informed.

12.1.2 Why Ethics?

The idea of Ethics in general, is often viewed as a set of moral principles that can affect

humans’ quality of life, i.e. what actions are right or wrong in specific situations. Even though

multiple definitions of ethics have been attempted that refer to quality of character, moral

duty or principle, or proper behavior, the section will undertake a contextualized definition

that refers to Computer and Information Ethics [98].

Computer and Information Ethics definition refers to a branch of Applied Ethics that studies

ethical problems aggrevated, transformed or created by computer technology. This computer

technology also incorporates the technology studied by this course, namely the Internet of

Things. In fact, computer ethics as a specific branch of applied ethics is becoming more and

more popular with new conferences, research centres, journals, textbooks, web sites and

courses dedicates to it. Additional sub-topics in computer ethics continually emerge as

information technology grows. Recently, sub-categories of Computer and Information Ethics,

have begun developing focusing on new more specific topics, such as online ethics, “agent”

ethics (robots, softbots), the “open source movement”, electronic government, ethics and

nanotechnology, etc.

The following subsections briefly discuss specific ethical values that often come across in the

discussion of Ethics for IoT. In particular, the ethical issues or values we explore include the

right to privacy, the principle of informed consent, data security and safety, transparency and

trust, information and power asymmetries.

P a g e | 284

12.1.2.1 The right to privacy

With the Internet of Things, more and more public data about Internet users exists, e.g.

through social media, their mobile devices, even their smart spaces. In addition to the

collection of vast amounts of data, the existence of massive data storage potential makes this

an even more complicated issue, as the data continues existing.

The right to privacy, simply states that each user has the right to decide that their data is not

visible to everyone. In addition to user data, as the Internet of Things is about Things, data

collected from these Things may also become available online. As sensor data is so ubiquitous,

it inevitably detects more than just the data that you have chosen to make public.

Let’s consider an example. Regarding the electricity smart meter, the aggregate data collected

from a group of consumers can be very useful for the company (cost benefits) or the

environment; but it may still “leak” personal data. One of the ways that this may happen is

when it becomes possible for private information about a household to be inferred from such

collected data. To address the ethical issue in this situation questions such as “Who owns such

sensor data?” must be answered. In fact, the issue of data ownership is significant; would the

ownership belong to the electricity company, the household owner, the other house

residents, or the Internet Service Provider?

Privacy of personal data has been addressed in the European General Data Protection

Regulation (GDPR), applicable since May 25th, 2018, in all member states of the EU. The

purpose of GDPR is to harmonise data privacy laws across Europe. We will return to the

discussion of GDPR, later in the chapter.

12.1.2.2 The principle of informed consent

The Informed Consent is an ethical and legal requirement, usually applied to participants in a

specific research study, customers of a specific service, or users of a specific product provided

by a company, etc. The informed consent is basically permission by the participant, customer

or user to collect and/or manipulate personal data (which may or may not include sensitive

data), or permission to join a clinical trial, or permission to be observed, etc.

Given that such permission is required for responsible development and use of technology,

and specifically IoT technology, then the consent form should offer necessary information to

P a g e | 285

transparently and truthfully present the permission request. An example of a consent form

should generally include the following components [99].

○ Inform the subject, i.e. the participant, customer or user, about: his or her rights while

using the IoT technology, the purpose of the study, service or technology product, the

procedures to be undergone, the potential risks and/or benefits of participation

○ Inform the subject on how the design ofthe study, service or technology product carefully

aligns with the requirements of the regional regulatory body, and any appropriate

standards related to the responsible and ethical use of the technology.

○ In addition to previously discussed rights of being infomed about the process or

functionality, the participants, customers or users should also be informed of their right

to withdraw from the study, or stop using the service or product, at any time. It should

also be clear that withdrawal is their right and it can happen without penalty.

12.1.2.3 Data security and safety

Data security is abroad concept that encompasses more than just safeguarding the actual user

data. It is also about safeguarding connected devices and networks, while practicing data

security principles in unit devices, e.g. encrypting data. The encryption process safeguards the

data as it travels through the network but the participating IoT devices themselves should be

used securely. The IoT devices, or the “Things” in the Internet of Things network and

infrastructure, are often vulnerable to different kinds of security threats. This is not just

because of the devices themselves, but also because of their connectivity in the IoT, which

opens them up to a number of vulnerabilities.

Although the issues of security are extensively covered elsewhere in the course, it is

important to highlight the ethical issues that arise when security is compromised when it

comes to personal and private data and basic safety. The idea of safety is about recognising

and mitigating the risks of using the technology. Such risks could include:

• Device Discovery Challenges

• Loss of privacy

P a g e | 286

• Physical security of devices

• Lack of user awareness for device usage

• Untimely patching and updating

For example, a common IoT device, e.g. a home appliance or a wearable device, can be used

by an attacker to infiltrate a larger network, or to obtain sensitive personal information.

12.1.2.4 Transparency and trust

Ideally, data generating users should always be made aware of their rights (by using informed

consent). Within the informed consent, the users should acquire information about how the

collected data will be used, and who will have access to it. In addition, information about how

long the data will be available before it is deleted, should be available.

In fact, for trust and transparency, it is important to explain to the technology users their right

to grant or withdraw consent at any time, as well as to request that their data is deleted or

can be accessed in its entirety. One of the elements that often makes it uncomfortable for

citizens to engage with new technologies is lack of understanding of what the technology

actually does, what data it collects and how this data is eventually used, or even whether the

data is ever deleted. It is important to create confidence in the usage of new technology and

support its potential for beneficial innovation by clearing such doubts for potential users.

For example, transparency and trust are important in dealing with large amounts of IoT data

generated as part of a service based on Artificial Intelligence (AI) algorithms, e.g. machine

learning. Trust for the actual AI service is crucial but it is based on the trust in the generated

data itself (i.e. the IoT generated data). The technology designer and developer need to follow

such guidelines that allow the users to eventually have available information that makes the

functionality of the technology as transparent as possible. Ignoring this requirement at the

design and development stage may result in untrustworthy technology, especially for

applications based on algorithmically more complex technologies such as AI.

P a g e | 287

12.1.2.5 Information and power asymmetries

Asymmetry of Information, and consequently of power between users and providers, is a

phenomenon frequently observed in IoT deployment. Oftentimes, it is necessary for the

service provider to have more information than the service user (even about the user) in order

to be able to use the IoT to support the service itself. This can be with regards to any type of

contextual information that is needed for a decision or a recommendation, depending on the

IoT service or application.

For example, consider a service that uses location information of customers and vehicles in

order to match appropriately the customers to vehicles (e.g. if the customers need a ride or

a delivery). In order to complete the transaction, the provider must collect information about

the user and match to the information about the vehicles, resulting in information

asymmetry. Momentarily, the service provider is in a position of power, as the information

that the users and the provider have are not symmetric, i.e. the provider knows more.

In order to ethically approach the need for information asymmetry, the process needs to be

transparent, the users must know and agree to the type and amount of information that the

service provider will collect. The service provider must use this information only for the

purposes of the services and then delete it when it is no longer of use for the specific purpose

that the user agreed to. It is important to ensure that the asymmetry is solely allowed for the

use within the service and that it is beneficial to the user.

12.1.2.6 Why Ethics?

When we discuss Ethics in IoT, certain applications often come to mind, for example eHealth

wearables, congestion control application for transportation, smart metering, smart banking,

smart farming, industrial automation applications, and monitoring applications, such as

environmental monitoring, or vehicle-tracking applications.

How do IoT types of interactions relate to ethics? One type of interaction that may raise

ethical concerns is the interaction between IoT providers and IoT users. Ethical values that

must be considered for this interaction is the principle of informed consent, the need for trust

within the interaction, and the need to make the terms of use understandable so that any

P a g e | 288

data collection and data sharing information that may be included in these terms, are clear.

IoT interactions included human to human interactions, where the IoT technology is only the

medium that supports a specific activity between the two end-users. In such a case the right

to privacy and information asymmetries and power asymmetries must be taken into

consideration. Such cases include the example of employee tracking by the employer, e.g. for

a distribution or delivery company. Finally, interactions of humans to “things” or objects need

to be considered. This category of interactions needs to take into account data usage details,

issues of security and safety and the overall quality of user experience as this is affected

directly or indirectly by the technology itself.

12.1.3 A methodical Approach to Resolution

According to Rushworth M. Kidder [100], there are ethical checkpoints that must be

considered during a process such that the decisions taken methodically lead to an overall

ethical outcome. Such an approach can be applied to the design, development or of an IoT

technology service or application, or an instance of a potential use scenario of the technology.

The approach begins by recognising that there exists a moral or ethical issue in a given

scenario. Even when designing a new service, use cases must be considered to be able to

identify such potential issues. Once you recognise that there is indeed an issue or more with

regards to ethics, the actual ethical value that needs attention must be identified. There needs

to be caution when characterising these issues such that there is not too much (hyper-

moralist) or too little (cynic) diligence on the issue.

Next, it is important to determine the actor or actors in the specific scenario instance, such

that it becomes clear who is involved. The facts of what can happen in the potential scenario

must be gathered. Once the actors and the facts are known, then the scenario can be tested

for right versus wrong, according to different paradigms. For example, what would be right

or wrong according to the law; what would be right or wrong according to the general public;

what would be right or wrong, according to a parent or your parent? Several dilemmas can

also be used to test the scenario “right versus wrong” approach. For example, we can check

the scenario against the “truth versus loyalty” dilemma, or the “individual versus community”

dilemma, or the “short-term versus long-term dilemma”, or even “justice versus mercy”.

P a g e | 289

To resolve these dilemmas, philosophers have proposed some approaches or principles to

follow. These include the Utilitarian principle, the Kantian principle and the “Golden Rule”

principle. However, one must not forget that there may be a different way out of a dilemma

that is neither of the sides offered by the dilemma itself. Nevertheless, for completion

purposes, we next define the three proposed principles for resolution of ethical dilemmas.

The Utilitarian principle, according to the Stanford Encyclopedia of Philosophy40, states that

the morally right action is the action that produces the most good, i.e. the aim from a

utilitarian-based decision is to bring about the greatest amount of good for the greater

number of people. In fact, Utilitarian principles hold that everyone’s happiness counts the

same and there is no egoism in decision-making.

The Kantian principle, also from the same source, is based on Kant’s Theory of Judgement, a

deontological theory of ethics, which, in summary, states that an action is good only if based

on a principle of duty to the moral law, i.e. that all people should follow regardless of their

preferences.

The “Golden Rule” principle, is also known through the phrase “Do unto others as you would

have them do unto you”. Normally, we interpret the “golden rule” as the way in which we are

supposed to act. However, in practice, its greater role may be psychological, alerting us to

everyday self-absorption and the failure to consider our impacts on others. The rule reminds

us also that we are peers to others who deserve comparable consideration.

Finally, once a decision is made, revisit it and reflect on it.

12.2 Focusing on IoT Development and Usage

This section focuses on IoT Ethics by considering the perspective of IoT development and of

IoT usage; in both cases we investigate ways to alleviate negative impacts on human

experience. The following paragraphs that discuss developing and using IoT technology in an

ethical manner are informed from the European Horizon 2020 project SHERPA (SHERPA:

Shaping the Ethical Dimensions of Smart Information Systems – a European perspective

(project-sherpa.eu)).

40 Stanford Encyclopedia of Philosophy, [online] plato.stanford.edu

P a g e | 290

When developing or using technology, specific high-level requirements must be considered.

The high-level requirements acknowledged for emerging technologies, including IoT

technology development and usage, include: human agency, liberty and dignity; technical

robustness and safety; privacy and data governance; transparency; diversity, non-

discrimination and fairness; individual, societal and environmental wellbeing; accountability.

With regards to developing technology, responsible and ethical development must be based

on responsible and ethical development methods, but also responsible and ethical

governance frameworks, e.g. policies, that encourage such development. Responsible

development methods must include responsible requirement collection, consideration of

ethics from the design phase, as well as ensuring that responsible values are considered

within the development stage, e.g. transparency. To achieve all the above-mentioned

responsibility guidelines, it is important to have responsible and ethical societal structures,

e.g. reflected in the educational system, reflected in the business practices, etc.

With regards to using technology, responsible and ethical usage can be achieved once ethics

are integrated in governance and management, such that responsible deployment and use of

AI is achieved (Responsible IT Management and IT Governance). There is a need for support

from other stakeholders and society at large, such as IT suppliers, governmental institutions,

educational institutions, professional organisations, clients, etc.

12.2.1 Operational Ethics Requirements for technology developers and users

With regards to the values of Human Agency, Liberty and Dignity, the following requirements

should be considered:

• Ensure that stakeholders are informed about how to control the system without being

deceived

• Ensure that the system does not indirectly affect autonomy or freedom of

stakeholders

• Ensure that the system does not interfere with the stakeholders’ ability to make

decisions

With regards to Technical Robustness and Safety, the following requirements should be

considered:

P a g e | 291

• Ensure that the system is secure and resilient against attacks

• Ensure that the system is safe in case of failure (safe mode, fallback plan)

• Ensure the accuracy, reliability and reproducibility of the system (proper logging and

documentation, audit-ready)

With regards to Privacy and Data Governance, the following requirements should be

considered:

• Ensure protection of stakeholders’ privacy

• Ensure protection of quality and integrity of data

• Ensure protection of access to the data

• Ensure protection of data rights and ownership

With regards to Transparency, the following requirements should be considered:

• Ensure that the system has a sufficient level of traceability

• Ensure that the system has a sufficient level of explainability

• Ensure that the relevant functions of the system are communicated to stakeholders

With regards to Diversity, Non-Discrimination and Fairness, the following requirements

should be considered:

• Ensure the avoidance and reduction of harmful bias

• Ensure fairness and avoidance of discrimination

• Ensure the inclusion and engagement of stakeholders

With regards to Accountability the following requirements should be considered:

• Ensure that the system and its design process is auditable

• Ensure that negative impacts are minimised and reported

• Ensure internal and external governance frameworks

• Ensure human oversight

Finally, with regards to Individual, Societal and Environmental Wellbeing, the following

requirements should be considered:

• Ensure a sustainable and environmentally friendly system

P a g e | 292

• Ensure the protection of democracy and democratic decision-making

• Ensure system evaluation for potential impact on individual well-being (vulnerable

groups)

• Ensure the protection of social relationships/cohesion

12.2.2 Law & Ethics and their application to technology development and use

Law is a set of rules produced by the government. The judicial system of the country uses the

law in order to provide protection to the public. The aim is to maintain social order, peace

and justice for society. The law is compulsory for all citizens and it dictates what a citizen can

do and cannot do. Penalties and legal consequences are defined for any law violations.

Ethics move beyond law, as they are based on people’s awareness/perception of right and

wrong. In fact, ethics can be viewed as a system of moral principles, that outline what is good

or bad for individuals and for society. It is not a law, but it can be an agreed code of conduct.

Nevertheless, ethics are not compulsory, and may be adopted by citizens. Ethics pretty much

suggest how a person should live and interact with other people.

We need to make a special note on Europe’s General Data Protection Regulation (GDPR). On

25th of May 2018, the European Union Regulation 2016/679 on data protection (the General

Data Protection Regulation), came into effect, replacing the European legislation on data

protection (Directive 95/46/EC). One such case study of need to consider GDPR is for the

example case of monitoring, e.g. vehicle monitoring, employee monitoring, where monitoring

is enabled by IoT technology. Such use of IoT technology may pose ethical concerns even

though consent is provided, and hence it is legal under GDPR.

According to GDPR, it is clear that for any employee monitoring to take place (and hence for

any personal data to be collected), consent must be given by the employee. This type of

consent, however, may pose ethical concerns. Even though the seeking of consent between

two parties demonstrates mutual respect, reinforces autonomy and generally assures

fairness, often this is not the case, since there are at least three ways in which consensual

transactions might be invalidated, and they include fraud, exploitation and coercion [101].

P a g e | 293

12.3 The ‘IoT and Ethics’ case study

This section is a tutorial that makes use of a case study published in The Orbit Journal in 2019

[102], and in particular in the special issue entitled Case Studies of Ethics and Human Rights

in Smart Information Systems, which visits the ethical implications of an IoT tracking

application from a software designer’s point of view, through interviews with the software

development company. The ORBIT project is funded by the UK Engineering and Physical

Sciences Research Council. Its purpose is to provide services to promote Responsible

Research and Innovation (RRI) across the ICT research community. RRI aims to ensure the

sustainability, acceptability and desirability of research processes and outputs.

The Case Study took place within a European funded project (acronym: SHERPA), as one of

several case studies that investigated the ethical implications of developing and using

emerging technologies, like the IoT, AI, Big Data, etc. SHERPA stands for ‘Shaping the Ethical

Dimensions of Smart Information Systems – a European perspective’.

The Case Study tackles the following aspects: Interviews with two software designers of IoT-

powered tracking applications; Information about how the company provides tracking

software as a service nationally and internationally; discussion and conclusions after

consideration of both the design and usage of such software in relation to ethics. In addition

to ethical implications, any relevant social, economic and legal implications are also identified.

An overview of the IoT based application is offered. Its purpose is to assist and enhance

specific business processes. The company employs the principle of informed consent,

however, the terms of use are often not fully understood (note: data collection and data

sharing are often included in such terms). When IoT and Big Data are used to create a Smart

Information System, any data collection, any data manipulation to generate useful

information, and any decision making based on generated information, must be considered.

The case study employs relevant literature review. Issues arising from literature review (see

published case study for more information) include: effects on employer-employee

relationship [103], consideration for employer’s motivation [104], and a need for guidelines

[105] so that the employers can make sure that the employees understand the circumstances

under which the monitoring can take place. In a nutshell, employees who do not perceive

P a g e | 294

much privacy, tend to view their organisation’s policies as less fair, they tend to trust upper

management less and overall, demonstrate less commitment to their organisations.

When discussing a technology user, we need to consider the user’s Quality of Experience

(QoE) in interacting with technology. QoE is the degree of delight or annoyance of the user

of an application or service. It results from the fulfillment of his/her expectations with respect

to the utility and/or enjoyment of the application or service in the light of the user’s

personality and current state. According to the International Telecommunications Union, QoE

can be measured in the following ways:

• Either by a subjective QoE assessment, typically based on Mean Opinion Score

(MOS) of a service according to user perception,

• or, by an objective QoE assessment, typically involv-ing Quality of Service (QoS)

parameters like latency, traffic volume density, reliability and cost etc.

QoE is related to Ethics. Ethics refers to a preferred action or state based on user-centred

paradigms, and so does QoE. QoE is more closely related to a Utilitarian approach as it literally

evaluates a utility function to quantify the user QoE (using either of the quantification

methods mentioned above).

The specific details that are outlined regarding the subscription and billing management

application that the case study explores, as an indicative application of IoT-based monitoring

is presented as part of exploring the case study and some in class tasks are given for the

students. The tasks explore both real-life scenarios that result in ethical dilemmas or some

aspects of the day to day practices that may be ethically vulnerable. The Case Study tasks

offer the opportunity to students to discuss both sides of these issues with their tutor.

P a g e | 295

13 Key-Enabling Technologies

and Applications in IoT

Author(s): Samiha Falahat

 Moath Alsafasfeh

 Saud Althunibat

This Photo by Unknown Author is licensed under CC BY-NC-ND

http://cybersecurity.startupitalia.eu/52855-20160926-linternet-of-things-pericolo-privacy-consumatori
https://creativecommons.org/licenses/by-nc-nd/3.0/

P a g e | 296

13.1 Introduction

Enabling technologies play main rule in IoT, these technologies explain how to transfer,

analyze and process the contextual information between different nodes or machines in IoT

network. One of the best scenarios that explain the meaning of enabling technologies in IoT

is applying these steps; identify IoT nodes, localize their position, or identify

their mobility path. Also, to keep IoT working, we need to reserve sufficient power resources.

This can be done by energy management, power optimization, energy harvesting …etc.

IoT Enabling technologies include four divisions:

1. Data sensing technologies (ex: sensors).

2. Techniques that allow items to analyse data.

3. Facilities that enable things to enhance privacy.

4. Technologies help in taking control of actions

5. Technologies that enable power consumptions in IoT.

This chapter will discuss in detail some technologies related to identifications, mobility,

positioning, IoT power optimization and energy harvesting.

13.2 Identification

The clear identification of things and people are primary requirement for communicating

information with real entities in our environment. [106]. In IoT platforms the Identification

process remains a challenge, that’s because of heterogeneity between the interconnected

platform. [43].

Identification can be divided into three categories as shown in Figure 13-1 Identification in

IoT, where each category is explained in detail in next section:

• Object identification which represents physical or virtual objects using different

techniques, such as RFID, Barcode, and biometric or vision-based detection.

• Communication identification which identifies the machines and nodes with

communication capabilities on the network (ex: IP, OID, etc…)

P a g e | 297

• Application identification which identifies the service layer application, objects, and

logical entities (ex: URI, URL).

The main definition of object identification is defining the objects inside IoT network [107].

Currently, there are various efficient sophisticated methods that collect and read the input

data then come out with a precise object location. RFID, Biometric, Barcode are featured

object identification techniques.

13.2.1 Radio Frequency Identification (RFID):

 Figure 13-2 shows the main parts components of an RFID system; reader (includes sender,

receiver, and processing unit), Tags, and Antenna.

Identification
categories

Object identification

communication
identification

application
identification

Figure 13-1 Identification in IoT

Figure 13-2 RFID system structure

source: https://www.nist.gov/image/14adlprfid-system-overview-graphicjpg

P a g e | 298

1. Reader: Reader is the intermediate component which connects the host server or

computer with a tag through the reader antenna. The RFID reader consist three main

components as shown in Figure 13-3. Radio signal generated and transmitted through

the upper antenna, while the reader receiver detects the signal through the lower

antenna.

2. Antenna: The main function of the antenna in RFID is linking the reader with the tag

by transfer and receive radio frequency signals between both sides. RFID system has

very wide frequency [108].

3. Tag: which is an integrated circuit coupled with an antenna that may come with

variant shapes and sizes. There are three classes of tags; passive tags which is smaller

and cheaper than active tags that’s need for powering from the reader before data

transmitting, and the last is semi-passive tags. The tag contains four basic components

(the controller, rectifier circuit, transponder, and memory).

4. RFID operating frequencies

There are several different frequencies an RFID system can use, the most common are:

- low frequencies (LF) (frequency<135 KHz)

- Radio High frequencies (HF) (frequency ~=13,56 MHz)

- Ultra-high frequency (UHF) (frequencies almost equal 434 MHz, 869 - 915 MHz and

2.45 GHz);

- Micro-wave (SHF) (frequencies near 2.45 GHz). [38]

Figure 13-3 Reader Anatomy
source: https://www.youtube.com/watch?v=Ukfpq71BoMo

P a g e | 299

13.2.1.1 Energy transmission modes in RFID

The most common transmitted powers are in the hundreds of milliwatts range and are

determined by the device context, power block limitations, antenna configurations, and

electromagnetic environment. [38]. Th RFID tag power ranges from µW to mW, depending

the circuit structure and internal components.

 The tag power sources classified into:

- Active tag: which has combined power source (ex: battery), due to that, the

operational range of active tags is usually much greater than that of passive

tags. It can start communication to a reader or other active tags.

- Semi-passive tag: has an embedded internal battery (long reader rang with

high cost) and unable to initiate communications to reader.

- Passive tag: has no embedded Internal power source, has less operational

range than semi passive tags.

13.2.1.2 Data communications modes in RFID

The frequency of operation defines the data transfer theory. The working principle for low

and high frequency operation is inductive coupling, while the working principle for ultra-high

frequency operation is electromagnetic coupling.

In inductive coupling operation, the reader produces a field that is used to match the RFID tag

antenna. Mutual coupling causes a voltage to be generated in the RFID tag's coil; A portion of

this voltage is rectified and used to power the controller and memory modules. as shown in

Figure 13-4.

Figure 13-4 Inductive coupling / load modulation (Chabanne, 2011)

P a g e | 300

In order to send data, when the power is sufficient, by connecting the load of the coil, the

current will start to flow through this load, this current will change according to changes in

the load impedance. Suppose the load is turned on and off. It seems also the current will

alternately turn off and on, causing a voltage to be produced in the RFID reader. The load is

turned on and off. The load Turning on and off called load Modulation.

In Ultra-High-Frequency ranges, the effect of coupling is electromagnetic When an RFID

obstacle collides with an incident wave released by the reader, it is mirrored back to the

reader. [38]. Figure 13-5 explains the working principle of backscattered signal.

Figure 13-5 Electromagnetic coupling (back scattered signal)

source: http:/www.youtube.com/watch?v=Ukfpq71BoMo

13.2.1.3 Protocols of RFID communications

A communications protocol is the Rules govern the conversation between devices. in RFID,

the conversation done between tags and a reader to ensure that data get transferred. RFID

has two main communication protocols:

1. Tag-Talk Only (TTO) protocol: the data sent by the tag on regular basis when

available.

2. interrogator Talk First protocol: the connection initiated by the reader and when

the tag reaches the reader magnetic field, it waits for from the reader to make

a request before sending its ID code.

P a g e | 301

Figure 13-6 coding techniques used in RFID (Chabanne, 2011)

13.2.1.4 RFID Data Coding

The Main three RFID coding types are 1-Binary-voltage level association, 2- signal transition

coding, 3-Manchester coding. Figure 13-6 shows these coding operations and other coding

techniques such as Miller coding, Bi-phase space codding (FM0), PWN, PPM, PIE. The figure

explains the differences between coding techniques mentioned above.

13.2.1.5 Anti-Collision Protocol

The reader should be able to identify tags as quickly as possible. Signals in both directions

between the reader and the tag will collide since they communicate over a common wireless

channel. As a result, the reader may not be able to identify all tags, or the process of tag

recognition may take a long time. An Anti-collision strategy are available in some RFID

systems, which solve the issue of tag messages cancelling each other out. [107]. Choosing the

Anti-Collision protocol depend on several factors like algorithm performance, bandwidth

limitation, implementation costs, noise tolerance, signal integrity, and security. Because of

these reasons, the anti-collision method is applied by the majority of RFID systems using the

temporal distribution technique. [38].

We will briefly discuss the deterministic anti-collision and probabilistic anti-collision

protocols.

13.2.1.6 Deterministic Anti-Collision Protocol

 For each RFID tag, the deterministic algorithms attempt to find a unique identification

number {UID}. In this scheme, a memory should be implemented because the reader needs

to choose from a field that contains a list of tag identifiers. One of the most common

P a g e | 302

approaches in deterministic protocol is binary tree search algorithm. The principle of work of

this algorithm, initially, the reader sends a query to investigate if there are any tag within the

magnetic field. The tags involved in field will make a response with respect to a given time. If

multiple transponders reply simultaneously, due to their UID’s, a collision happened and then

it is requiring to detect the collision [38]. The reader sends a request with the number of

qualified bits after detecting a collision in a particular bit, which is immediately followed by a

bit assigned to 1. (It can be 0 if the reader's designer decides on that value.).

13.2.1.7 Probabilistic Anti-Collision Protocol

In a probabilistic protocol, each tag data packet has a specific transmission time or time slot.

A collision occurs when two or more separate tags select the same slot for sending their

answer, and all data is lost. The benefit of the probabilistic scheme is that all RFID tags can be

detected and recognized with a single instruction, eliminating the need to contact each

individual tag.

13.2.1.8 Applications of RFID

RFID emerged quickly with many life aspects, it’s used in agriculture, medical, and used widely

in industry. Some RFID applications examples are as follows:

1. In-store traffic patterns: RFID In-store application benefits are: monetizing high-

traffic end caps, monitoring cart or package abandon in-store, eliminating physical

pinch areas, etc. Moreover, Employee movements could be tracked using RFID tags in

the store. RFID can be used to monitor inventory and equipment movement,

providing useful data by observing how equipment moves through the store's physical

space.

2. RFID in Libraries and bookstores

Associating books with tags significantly simplifies the control of inputs and outputs

in a library. There are various applications.

– facilitate the procedure of inventory;

–feature of Anti-theft can be added to tags;

P a g e | 303

– easy lend and return procedures. Automatic return terminals may also be deployed

[38].

13.2.2 Barcode Identification Technique

Barcode is a visual representation of information. The basic Barcode technology advantage is

it has low rate of error (Generally, the number is less than one million.).

In detail, the barcode is series of parallel printed lines (bars). These lines may have variable

width (mainly two widths available; thin and thick). The computer read bar in form of 0 or 1

13.2.2.1 Barcode work principle

The information found in the bar code can pass from the scanner to the device where the

code is detected when the bar code reader or scanner is used to scan the bar code. Figure

13-7 demonstrates the idea of a bar code reader's reading.

The main steps of Barcode working principle can be summarized in the following:

1. The laser beams emitted from the laser diode hit the polygon mirror and scan a bar

code.

2. The diffuse reflection light is obtained by the light-receiving portion (photodiode).

3. As seen in the below figure, the defuse reflection assembles an analogue wave

4. Analog to digital process done by the bar code reader.

5. Digital signals are used to recognize narrow/wide bars and narrow/wide spaces.

6. Data decoding done then the output is generated.

Figure 13-7 laser barcode reader (reading principle) [106]

P a g e | 304

13.2.2.2 Barcodes types

There are many types of barcodes, they can be classified into two main types:

- One-dimensional barcodes:

- Two Dimensional Barcodes

 Two-dimensional (or 2D) barcodes use two-dimensional symbols and shapes to
systematically represent data, as shown in Figure 13-9.

13.2.2.3 Barcode Applications and uses

Barcode is commonly used in many sectors; here some examples of barcode uses.

o Advertising

Advertisers exploit the barcodes capabilities by using them to reach out to customers in a

more interactive way. Simply by downloading and installing an app that can read barcodes on

a smartphone, you can learn a lot more about the product being advertised.

Figure 13-8 One- Dimensional Barcodes source
https://www.britannica.com/technology/barcode

Figure 13-9 Two-dimensional Barcodes source:
https://www.britannica.com/technology/barcode

P a g e | 305

o Tracking food intake

It’s pretty good way to know detailed information about the food Ingredients, calories,

product or expiry dates and so on. This is done by scanning the bar code on the food wrap

using phone application then the user will be able to read all the food information.

13.2.3 Biometric Identification

Biometric is a technique that help in identify and authenticate a person based on set

recognizable data, which are unique and specific to a person [109].

Biometric authentication is the method of determining similarities between data for a

person's characteristics and data for a person's biometric "sample."

Biometric identification identity the person or objects.

There are two main categories of biometric; the Physiological features and behavioral

features:

Figure 13-10: biometric physiological/behavioral

Among the various biometric ID techniques, the physiological methods (fingerprint, face,

DNA) are steadier than behavioral methods (keystroke, voice print). That’s because of

physiological features are often immutable except by harmful injury [110].

Biometrics

Physiological

Face

Fingerprint

Hand

Iris

DNA

Behavioral

Keystroke

Signature

Voice

P a g e | 306

Examples of Biometric recognition techniques and applications

- Face recognition: Is based on a detailed review of the facial features as well as the

relative locations of the eyes, nose, and mouth. Face images can now be collected

using both traditional video and thermal imaging techniques. Thermal imaging creates

facial images using a hot wire formed by blood in the capillaries of the face, while

normal video captures images of the face by a camera. [109]

- Fingerprint Recognition

Fingerprints retain their permanency and uniqueness over time. Fingerprints offer

more secure and accurate personal identification than passwords and id-cards,

according to experiments. Examples such as password protection by implement

finger-print devices with computers and smart phones.

13.2.4 Comparison of identification techniques

By comparing between barcodes, biometric, and RFID identification techniques we conclude

that the RFID is the most effective and reliable technique. It offers unrivalled benefits in a

variety of areas, Transmission distance, reading and writing speed, anti-interference

capability, and service life are just a few of the factors to consider. Despite the fact that RFID

has a higher manufacturing cost than barcodes and visual codes, it has proven to be an

efficient method for constructing IoT systems. [107].

In barcode there is only reading mode, in regards of confidentiality barcode bad choice. has

short lifetime, the cost is low and cheap. The biometric also works only in reading mode but

it has good confidentiality, long lifetime, and high cost.

13.3 Localization

Localization or positioning term refer to determining the location of an object (ex: Sensors in

IoT Network) or human in specific area, or to determine the spatial relationships among

different objects.

Localization is important to provide a real physical context to sensor readings, for example, in

environmental monitoring, location identification is necessary to sensor reading. Moreover,

P a g e | 307

the Location information is important for services such as intrusion detection, and

surveillance systems [27].

In IoT, for location estimation, localization techniques may be used, which can either

externally localize an object or enable an object to decide its own position. The United States'

Global Positioning System (GPS) is an example of a global positioning system. [106].

Many localization techniques depend on methods to specify the position of an object, these

methods:

1. Geometric calculation such as triangulation (for instance In GSM networks, this is

achieved by calculating angles with respect to fixed points or nodes with known

positions.).

2. Trilateration (by measuring the distance between neighbouring nodes).

3. Scene analysis determines (called a “footprint”). A Real-time image of the landscape

from the corresponding viewing angle or can be stored previously in a table with

predetermined values of a point of view [106].

The main challenges of localization process are how to track the mobile object or moving

object, and how to handle indoor object position.

13.3.1 Overview of Localization process

The process of localization can be summarized as follow and shown in Figure 13-11.

• Unknown node selection phase: an unknown node must be defined that has at least

three reference nodes in its neighbour area, then pick unknown node s, and obtain an

ambiguous position for this node.

• Distance estimation phase This involves selecting a reference node, determining its

local location, and measuring the distance to the reference node.

• Position computation phase: measure the position of the selected unknown node

• Localization algorithm phase: trigger and activates the algorithm that’s attempts to

identify the unknown node location.

• Output phase: the output represents the estimated location (can be in different

forms).

P a g e | 308

Figure 13-11 Localization process [111]

13.3.2 Localization techniques classification

Techniques for localization can be categorized as centralized, decentralized, or distributed.

The classification of localization techniques is shown in Figure 13-12.

Figure 13-12 localization techniques

In distributed localization, each sensor node calculates the estimated location for itself, and

communicate with other sensors in the same area to get their information. There are two

types of distributed localization schemes: range-based and range-free.

All measurements are clustered at the fusion Center, where the calculation takes place, in

centralized localization. The findings are then sent back to the nodes. Latency, energy usage,

and bandwidth consumption are all effects of data transmission in the network.

input
distance

estimation
position

computation
localization
algothrim

ouptut

localization
techniques

distributed
localization

Rang-Based
techniques

Range-Free
techniques

centralized
localization

P a g e | 309

13.3.3 Positioning systems

Device or nodes positioning and guidance are complicated by the variations between indoor

and outdoor environments. Outdoor positioning requires regional or even global coverage,

while indoor environments are limited to rooms and houses. [112].

There are many methods and techniques could be applied for both indoor and outdoor

localization. These technologies are sometimes classified as network-based or satellite-based

systems. Another classification is dependent on whether the positioning solution is

performed by the mobile user or the base station, resulting in mobile terminal (user)-centric

(such as GPS, A-GPS, E-OTD), network-centric (COO, TOA, TDOA, AOA, RSS, multipath pattern

matching), or hybrid solutions (See Figure 13-13).

Figure 13-13 localization/positioning methods [27]

position
determination

indoor

trilateration/traingulation

indoor GPS,bluetooth,WLAN

cell allocation

GSM,RFID,WLAN

Pattern -based

WLAN

outdoor

trilateration/traingulation

GNSS,GSM,LORAN-C,RADAR,WLAN
etc,,,

cell allocation

bluetooth,GSM,WLAn

pattern-based

GSM,WLAN

P a g e | 310

13.3.3.1 Outdoor Positioning Systems

Only GNSS systems are able to provide sub meter accuracy in outdoor location. The other

alternative are cellular based systems, where the accuracy varies with several parameters and

even in best conditions, achieved accuracy lies in the order of meters.

Differential GNSS is developed extension of GNSS that provides higher system precision, it is

derived from the principle of positioning error differentiation, thus increasing the accuracy of

measurements. The main disadvantage of DGNSS, which is the fact that the rover must be

near the base stations in order for the corrections to take effect.

Another method for precise outdoor localization is called Precise Point Positioning (PPP). This

method only needs a standalone receiver to operate. PPP relies heavily on post processing,

with very precise satellite ephemeris, clock information and dual carrier receivers, the

solution is able to deliver sub meter accuracy. The very long convergence and offset of moving

rover are main drawback of PPP systems.

13.3.3.2 Indoor Positioning Systems

Ultra Wideband (UWB) is one of the most used radio technologies capable of providing sub

meter positioning accuracy in indoor environments. UWB communication is strongly immune

to multipath and noise. Since the UWB transmit power lies at the noise floor, the technology

is also highly resistant to interference; due to very low transmit power. Many common indoor

positioning technologies like Wi - Fi and Bluetooth or RFID still get fairly accurate results in

the order of meters, plus the overall price is generally lower than with UWB solution.

13.3.3.3 Factors influence the selection of localization techniques

positioning methods optimal requirements for IoT network are

- Accuracy: it defines distance mismatch error rate between the measured distance and

exact device location

- Responsiveness: In localization, responsiveness can be defined as the speed of

location update for specific node.

- Coverage: it determines the network coverage area interferences problems.

P a g e | 311

- Scalability: if the system works within in expanded areas, its performance is measured

in terms of scalability. Less scalability means less performance.

- Size and devices costs

13.3.4 Ranging Techniques

many Ranging methods have been investigated by researcher in previous years. The relative

distance is main value to measure, measuring methods like time-of-arrival , time difference

of arrival , or propagation model generated from RSSI value used to find the relative distance

measurements [113].

Range-based schemes are vulnerable to their surroundings, and obstacles may cause errors.

13.3.4.1 Time of Arrival

Time of Arrival’s main concept relies on determining the distance between the transmitter

and receiver using measured propagation time of signal, and predefined signal velocity. For

example, a radio spectrum propagates at the light speed (around 3 x 10^8 m/s), that is, the

signal only requires around 30 ns to travel 10 m. As result, is that radio-based distance

measurements require high resolution clock, which increase the cost and complexity of a

sensor nodes network [27].

Time of arrival method divided into two main schemes;

1. One-way time of arrival method: this way to calculate the difference between signal

transmitting time and receiving time, that’s based on distance between two nodes.

2. Two-way time method: calculate the Round-trip time (RTT) at the transmitter node

 Figure 13-14 shows the two method time measurements

Figure 13-14 (a) one-way scheme. (b) Two-way scheme [24]

P a g e | 312

13.3.4.2 Time Difference of Arrival (TDoA)

In TDoA approach two different signals with different speed were travels together. the

position can be determined at the receiving node (See Figure 13-15). For instance, the first

signal is radio signal (𝑡1 :issued and 𝑡2:received), followed by an acoustic signal either

immediately or after a constant time interval [27] . Therefore, the receiving node can

calculate the distance by:

𝑑𝑖𝑗 = (𝑣1 − 𝑣2) (𝑡4 − 𝑡2 − 𝑡𝑤𝑎𝑖𝑡)

No synchronization clock needed between the sender and receiver. this approach has extra

hardware costs

13.3.4.3 Propagation Model

the relative distance is calculated by the obtained signal intensity (RSS). When a computer

senses a radio signal, it may use the propagation model and RSS to calculate the distance.

13.3.4.4 Angel of Arrival (AoA)

The basic AOA concept is to find the direction of propagated signal, typically, massive array

of antennas is needed [27]. There is no need for clock synchronization. however, this

technology suffers from a low accuracy because of the performance of the angular estimator.

13.3.5 Range-base Localization

13.3.5.1 Triangulation

Triangulation depends on triangle geometric characteristics to estimate node locations

Figure 13-15 TDoA Scheme [24]

P a g e | 313

 Figure 13-16 shows how to determine the unknown location of anchor using three angles

measurements by use (AoA).

13.3.5.2 Trilateration

Trilateration is known as the procedure of calculating node’s location by measure the

distances between itself and a number of anchor nodes with known locations. (See Figure

13-17)

13.3.5.3 Iterative and Collaborative Multilateration

Multilateration (MLAT) is a navigation technique that uses the difference in distance between

two stations at known locations that transmit signals at known times to calculate the distance

between them. There are two main multilateration method. The iterative multilateration

where the nodes in network exchange their estimated location with each other in repeated

manner until they are totally localized. The second, the collaborative multilateration, in order

 Figure 13-16 triangulation [24]

Figure 13-17 trilateration [24]

P a g e | 314

to estimate the location of the node, it uses the multi-hop information from neighbour node

then attempt to calculate the possible location for both nodes.

13.3.6 Range-Free Localization

In range-free schemes, there is no need for additional hardware needed for distance

estimation process; it simple and low cost because of these features range free techniques

have attract research attention in recent years.

13.3.6.1 Approximate Point in Triangle (APIT)

In APIT usually, the nodes know their locations which they equipped with high powered

transmitters A triangular region is formed by any three points, and a node's may locate within

or outside, such a region allows a node to narrow down its possible locations. The Point in

Triangulation test, which enables a node to evaluate the set of triangles within which it

resides, is the first step in APIT localization. After a node N has received position messages

from a set of nodes, it evaluates all possible triangles formed by these nodes [27]. Figure 13-18

represents APIT test scenario.

13.3.6.2 Ad Hoc Positioning System (APS)

In APS, one node that knows its location, broadcast a message includes the location with hop

count. every receiving node store the minimum value. After ignoring higher values. The

location propagation to all neighbours done using distance vector algorithm. Each node has

routing table which exchanged and updated periodically with other nodes. Both nodes in the

network, as well as other anchors, are given the shortest distance in hops in the DV-hop

Figure 13-18 APIT test scenario

P a g e | 315

scheme. The following equation can be used to calculate the total single hop distance in

anchor (i) [114].

𝑐𝑖 =
∑ √(𝑥𝑖 − 𝑥𝑗)

2
+ (𝑦𝑖 − 𝑦𝑗)

2

∑ ℎ𝑖

where anchor 𝑗 is at position (𝑥𝑖 , 𝑦𝑗) and ℎ𝑗 is the distance in hops from 𝑗 to 𝑖 .

13.3.6.3 Fingerprint –based indoor localization techniques

Because of its high accuracy compared to other methods, fingerprinting is a common method

of localization. It has a low degree of sophistication, needs no line-of-sight measurements of

access points, and has many various applications in the complex indoor environment.

Visual fingerprint-based localization, motion fingerprint-based systems, and signal

fingerprint-based methods are all examples of fingerprint-based methods used in indoor

localization.

1. Visual fingerprint-based localization

In this scheme the devices can collect their position through image processing and matching

procedure. The ability of image processing a feature must combined with these devices. the

process is start after taking the photo by a camera which embedded in device, which been

analysed by specific computing methodologies, next we need to use AI algorithms to gather

the features and learn how to react. Then image processing techniques and algorithm

activated to find the matching.

Matching speed is the biggest challenge in visual fingerprint-based localization. In addition,

camera operation also consumes too much of the device's battery energy. Moreover, this

type of localization method is still not capable of achieving high precision.

2. Motion fingerprint-based localization

In this method, the primary concept is to detect user motion data, which is collected using

embedded sensors such as an accelerator and a gyroscope. For example, some moving

patterns or user paths can be found to match a predefined motion signature. The major

P a g e | 316

disadvantage of this approach is that the sensors can generate noise, and the occurrence of

an error can be accumulated over time.

3. Signal fingerprint-based localization:

Signal fingerprint-based localization is commonly deployed in areas where a large amount of

Wi-Fi infrastructure and services are implemented, particularly in the enclosed environment.

Some outdoor applications use this scheme as well. These positioning methods typically

include phase of offline training and the online fingerprint matching sequence. The main

objective of the first stage is to develop a fingerprint database that stores the similarity

between the (RSS) patterns from different access points and the locations to be fixed. The

location of the device is then determined at the matching stage. A high accurate matching

algorithm used to search the fingerprint in database and find the minimum differences with

the device need to be located. [113].

13.3.7 Comparison of localization techniques

There are key differences between the several localization techniques, it could be

summarized in Table 13-1.

Table 13-1 localization techniques comparison [115]

Techniques Cost Accuracy Energy efficiency Hardware size

Centralized based depend high less Depends

Distributed based depend low high Depends

received signal

strength indicator

low Medium high Small

Time of Arrival high Medium less Large

Time Deference of

Arrival

low high high Large, but less complex

Angel Of Arrival high low Medium Large

Distance vector

hop

low Medium high Small

P a g e | 317

approximate point

in triangle

Medium Medium high Medium

 Summary

Since position information is considered basic information in many applications, localization

is a very important topic in IoT. Many researchers have worked on it, and a number of

algorithms and techniques have been proposed. To achieve higher localization accuracy, each

technique has specific features and operations.

The most significant factor in determining localization is accuracy. Indeed, the majority of IoT

implementations require extreme accuracy. With specialized hardware, Range-based

schemes usually produce better precision based on node-to-node distances or angles.

13.4 IoT Power Management

Power consumption is a very critical issue in IoT technology due to several reasons. First, IoT

nodes are usually small, and hence, cannot be equipped with heavy/large power resources.

Also, IoT can be distributed in harsh environments which make battery charging or

replacement is a challenge. As such, not all power supplies are sufficient for IoT applications.

They must be highly effective at both low and full load, space-saving, reliable, and, most

importantly, affordable, because they will be as popular as the sensors, processors, and

actuators that they support.

Power management techniques are used in IoT devices in order to minimize energy waste

and make the IoT system much more effective. Since multiple aspects have an effect on

battery life, In the area of IoT devices that use batteries for a longer period of time, power

management is a major challenge.

The sensor devices normally get their power from a battery source. Figure 13-19 shows a

standard IoT power management architecture. Since the rectified input is exchanged with the

switching regulator, it can be used in many areas. The output of the sensors, for instance, is

sent to the switching converter, and then the output of the DC-to-DC converter is sent to the

unit of power management, which is responsible for the IoT system's energy harvesting.

P a g e | 318

The following are the most relevant power management elements:

• Voltage regulators: which take input voltage and regulate it into another

application. For this purpose, we can use (linear regulator, buck convertor,

boost convertor, or buck boost convertor). The regulator needs to step up or

down the voltage between the battery and different sub-circuits in the device.

Step-up functionality is required by high-voltage devices, while the step-down

function helps reduce the power consumed by digital CMOS circuits. This

provides longer battery life and enables new features like additional camera.

• AC-DC Controllers which take the AC out from main AC socket and regulate it

into a stable voltage.

• The LED Drivers Block which is basically, making from a DC voltage constant

current.

• Battery Management block to control the power in batteries, by charging

batteries or checking the battery state of charge with battery gauges function.

• USB- C power delivery function block: it is a new technology used in power

management.

Vibration/targeted RF

 Rectifier
DC-DC Switching

Regulator

LDOs, Sensors

Power good

indicator

Battery

management

Energy harvester

(solar, thermal)

Figure 13-19 architecture of typical power management of IoT node

P a g e | 319

Figure 13-20 depicts these function blocks with their associated techniques.

Figure 13-20 Power management Functions blocks source:
https://www.youtube.com/watch?v=ut8cC5YXMj4&t=768s

13.4.1 Energy Harvesting

 Embedded devices and remote sensors, for example, use batteries to power their electronics.

Long-lasting batteries, on the other hand, have a finite lifetime and must be replaced every

few years. Since there are hundreds of sensors in remote areas, removing them can be

incredibly expensive. “Energy harvesting” is one technology being developed to solve this

issue. Energy harvesting is the method of extracting energy from natural sources and using it

to power machines. The purpose of energy harvesting is to boost the system lifetime while

lowering repairs; this can be done by exploiting some sustainable resources, such as solar,

vibration, wind and thermal gradients. Figure 13-21 shows the structure of energy harvesting

technology.

function
blocks

voltage Regulators

LDO

buck convertor

boost convertor

buck boost convertor

USB-C POwer Delivery

USB-C PDcontrollers

E-mark IC

Battery Managment

Battery Chargers

Battery Gauges

LED Drivers

DC-CC LED drivers

AC-CC LED drivers

AC-DC Conrollers

Flyback Controllers

PFC controller

Secondary side
Controllers

https://www.youtube.com/watch?v=ut8cC5YXMj4&t=768s

P a g e | 320

13.4.1.1 Technologies of Energy Harvesting

1. Piezoelectric technology

The main concept based on conversion of oscillatory mechanical energy into AC electrical

energy. This energy can be transformed into usable electrical energy, which can be used to

power portable electronic devices such as sensors and GPS receivers. Some consumer

electronic devices, such as cellular phones, can be powered directly using piezoelectric energy

harvesting. [116].

When mechanical force or pressure is applied to such special materials, referred to as

piezoelectric materials, the atomic structure of the crystal changes due to the net motions of

positive and negative ions with respect to each other, resulting in electrical dipoles or

Figure 13-21 Different technologies for energy harvesting

P a g e | 321

polarization. Thus, The dielectric crystal transforms into a loaded material. The amount of

voltage produced is proportional to how much stress or voltage is applied to the crystal. [117].

Ionically bound piezoelectric materials have positive and negative ions in pairs known as unit

cells. These materials occur in nature as an anisotropic dielectric with a non-centro-symmetric

crystal lattice, meaning they have no free electrical charges and the ions have no symmetry

centre.

Piezoelectric materials are classified into four types: ceramics, single crystals, polymers and

composites. Piezoelectric ceramics are generally used as a piezoelectric material in energy

harvesting machinery due to their low cost, good piezoelectric properties and ease of

integration into energy harvesting equipment.

Electromagnetic Energy Harvesting

The electromagnetic energy harvester was developed to transform a frequency range of 100-

200 Hz input source (such as vibration) into usable electrical energy.

This technology's basic idea is based on the magnetic field power that can be used to charge

a battery in a fixed period of time. Faraday's law on electromagnetic induction (Faraday's law

address that a current will be induced in a conductor when the magnetic field changed) is the

core concept of electromagnetic energy harvester design (see Figure 13-23).

Figure 13-22: piezoelectric direct effect mode source:
https://www.elprocus.com/what-is-a-piezoelectric-material-working/

P a g e | 322

- Linear electromagnetic energy harvester

The linear electromagnetic energy harvester is based on the resonance principle. In other

words, when the external source's frequency meets the harvester's fundamental frequency,

a solid magnet is set in motion compared to a stationary coil, producing a time-varying current

in the coil according to Faraday's law. [118]. The linear electromagnetic harvester has the

potential to play a significant role in the harvesting of vibration energy in a number of sectors

and industries.

3- Photovoltaic (Solar) Energy Harvesting

Photovoltaic solar collector transforms solar radiation (called insolation) into direct current

(DC) electric power. Depending on the application (grid, off-grid, battery backup),

photovoltaic solar solutions usually involve multiple panels linked together (called arrays),

electrical disconnects, over-current safety (circuit breakers or fuses), inverters, junction

boxes, and other special tools. Figure 13-24 shows the typical PV harvester with single panel.

Figure 13-23 Interaction of Magnetic fields and current carrying conductor
source: https://www.electrical4u.com/

P a g e | 323

4- Thermoelectric (Temperature Difference) Energy Harvesting

Thermoelectric energy harvesting based on the operation of the thermoelectric generator. A

thermoelectric generator converts heat directly into electricity according to a phenomenon

called as the Seebeck effect.

Thermoelectric harvesters provide clean energy for energy harvesting with a variety of

benefits: they are no maintenance needed, due to the use of highly durable and lightweight

solid-state equipment; they are silent and quiet; and they are highly effective in terms of the

atmosphere, since heat is obtained from waste heating systems and transferred into

electricity.

5- Electrostatic energy harvesting

A variable capacitor and a power transmission circuit make up an electrostatic energy

harvester. as shown in Figure 13-25. The electrostatic effect that occurs when electrical

charge is stored between parallel plates of a capacitor. The electrical energy harvesting is

accomplished by modifying one of the variable capacitor parameters by changing one of the

plates and shifting the other with an external mechanical motion: separation of plate.

According to the theory of electrostatics, mechanical movement can be converted into

electrical energy.

Figure 13-24 PV harvester system (Bizon, 2017)

P a g e | 324

Comparison of energy harvesting technologies

A brief comparison between different energy harvesting technologies summarized in Table

13-2.

Table 13-2 energy harvesting technologies comparison [119]

 Piezoelectric electromagnetic photovoltaic Electrostatic

Advantages -Robust
-Easy to use
-High output voltage
-Large temperature rang

-High output
current
-Long life
-robust

-clean and silent
-Small-scale solar
plants
-flexibility

-High output
voltage
-Simple integration
-Capturing low
frequencies

Disadvantages The conversion properties
depend on piezoelectric
element

-Low output
voltage
-Low efficiency
-Heaviness

 -expensive
-variable energy
source

-The requirement
of a polarization
source
-Poor mechanical
guiding
-Complicated
power circuit
management

13.4.2 Battery technologies for IoT

Choosing batteries for IoT can be complicated, as there are a broad range of application types.

Battery requirements for specific class IoT devices can be assisted by interpreting their

physical, electrical and functional components. As a result, the physical size of the IoT gadget

may confine the physical size of the battery that can be thought of. The operating

Variable Capacitor Energy Transfer Circuit
Pmechanical

PElectrical

l

Figure 13-25 electrostatic harvester

P a g e | 325

environment will determine if the choice of batteries is limited to those with modern car or

business temperature assessments. Components and functionality will determine the

resilience and strength requirements, as well as whether the essential or battery-powered

battery is more eligible for the application.

In principle, batteries can be classified either as non-rechargeable or rechargeable cells,

referred to as main and secondary cells, respectively. Batteries can be made from a wide

variety of chemical substances, the essential chemistry of primary batteries called (alkaline),

examples of primary batteries are: (AA, AAA, C, D-Cell).

Li-ion cylindrical and Li-polymer pouch cells are examples of secondary batteries (both made

from lithium). Each chemistry and structural methods has its market in terms of price and

performance, with lithium-based primary and secondary cells of different kinds having been

widely used in recent years due to its relatively high energy density, higher relative to alkaline

cells nominal voltage of 3.0–3.6 Volt in many of the cell types, and usually low self-discharge.

Factors influence batteries selection for IoT Application

When choosing a battery for an IoT unit, there are thousands of combinations of battery

shapes, sizes, capacities, cell types, and other parameters must be taken in consideration.

Below, are the parameters must take in consideration to make battery selection.

-The nominal and cut-off voltage of an IoT application the output voltages of various

technologies and chemistries vary. We must pick the one that holds the device above the cut-

off voltage for the remainder of its existence.

- The environment’s temperature: Think about where the IoT device would be implemented

to ensure an optimum and consistent supply of power to the object.

- The overall pulse current and frequency, as well as the consumption profile: specify if the

IoT platform requires a low or high pulse frequency.

P a g e | 326

Bibliography

[1] Ι. Analytics, “State of IoT Q4/2020 & Outlook 2021,” [Online]. Available: https://iot-

analytics.com/product/state-of-iot-q4-2020-outlook-2021/.

[2] Gartner, “Leading the IoT,” 2017. [Online]. Available:

https://www.gartner.com/imagesrv/books/iot/iotEbook_digital.pdf. [Accessed 2021].

[3] J. Koistra, “Newzoo’s 2018 Global Mobile Market Report: Insights into the World’s 3

Billion Smartphone Users,” Newzoo, 2018. [Online]. Available:

https://newzoo.com/insights/articles/newzoos-2018-global-mobile-market-report-

insights-into-the-worlds-3-billion-smartphone-users/. [Accessed February 2021].

[4] ITU, “www.itu.int/internetofthings,” International Telecommunicaiton Union, 2005.

[Online]. Available:

https://www.itu.int/osg/spu/publications/internetofthings/InternetofThings_summary

.pdf. [Accessed 21 June 2020].

[5] D. Evans, “The Internet of Things: How the Next Evolution of the Internet in Changing

Everything,” Cisco Internet Business Solutions Group (IBSG), 2011. [Online]. Available:

https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.p

df. [Accessed 21 June 2020].

[6] O. Said and M. Masud, “Towards internet of things: survey and future vision,”

International Journal of Computer Networks, vol. 5, no. 1, pp. pp.1-17, 2013.

[7] W. Miao, T. L., F. L and I. S. a. H. D., “Research of the architecture of Interent of Things,”

in 3rd International Conference on Advanced Computer Theory and Engineering (ICATE

'10), Chengdu, China, 2010.

[8] ITU-T, “Overview of the Internet of Things,” Series Y: Global Information Infracstructure,

Internet Protocol Aspects and Next-Generation Networks: Next Generation Networks -

P a g e | 327

Frameworks and functional Architecture Models, Vols. Recommendation ITU-T Y. 2060,

June 2012.

[9] Y. B and H. G., “Supply chain information transmission on RFID and Interent of Things,”

in International Colloquium on Computing, Communication Control and Management,

Sanya, China , 2009.

[10

]

P. S. a. S. R. S., “Internet of Things: Architectures, Protocols and Applications,” Journal of

Electrical and Computer Engineering, vol. 2017, pp. 1-25, 2017.

[11

]

Z. Yang, Y. Yue, Y. Yang, Y. Peng and X. W. a. W. Liu, “Study and application on the

architecture and key technologies for IOT,” in 2011 International Conference on

Multimedia Technology, Hangzhou, China , 2011.

[12

]

“A survey on IoT architectures, protocols, applications, security, privacy, real-world

implementation and future trends,” in 11th International Conference on Wireless

Communications, Networking and Mobile Computing (WiCOM 2015), Shanghai, China,

2015.

[13

]

J. Gubbi, R. Buyya, S. Marusic and a. M. Palaniswami, “Internet of Things (IoT): A vision,

architectural elements, and future directions,” Future Generation Computer Systems,

vol. 29, no. 7, pp. 1645-1660, 2013.

[14

]

F. Bonomi and N. P. a. Z. J. Milito R., “Fog Computing: A Platform for Internet of Things

and Analytics,” in Big Data and Internet of Things: A Roadmap for Smart Environments,

Berlin, Springer, 2014, pp. 169-186.

[15

]

F. Bonomi, R. Milito, J. Zju and S. Adepalli, “Fog computing and its role in the internet of

things,” in MCC workshop on Mobile cloud computing, 2012.

[16

]

M. a. H. E.-N. Aazam, “Fog Computing and Smart Gateway Based Communication for

Cloud of Things,” in International Conference on Future Internet of Things and Cloud,

Barcelona, 2014.

P a g e | 328

[17

]

L. Atzori and A. a. M. G. Iera, “SIoT: Giving a Social Structure to the Internet of Things,”

IEEE Communication Letters, vol. 15, no. 11, pp. 1193-1195, 2011.

[18

]

ITU-T, “Y.4460 - Architectural Reference Models of Devices for Internet of things

applications,” Series Y: Global Information Instrustructure, Internet Protocol Aspects,

Next-Generation networks, Internet of things and Smart Cities, 2019.

[19

]

D. Z. a. S. Guo, “The Web of Things: A Survey,” Journal of Communications, vol. 6, no. 6,

pp. 424-438, 2011.

[20

]

“National Scienec Foundation (NSF), Cyber physical systems NSF10515,” Arlington, VA,

USA, 2013. [Online]. Available:

https://www.nsf.gov/pubs/2010/nsf10515/nsf10515.htm.. [Accessed 10 8 2020].

[21

]

S. Peisert, J. Margulies, D. M. Nicol and H. Khurana, “Designed-in Security for Cyber-

Physical Systems,” IEEE Security and Privacy Magazine, vol. 12, no. 5, pp. 9-12, 2014.

[22

]

N. David, J. S. Silva and F. Boavida, A Practical Introduction to Human-in-the-Loop Cyber-

Physical Systems, Wiley-IEEE Press, 2018.

[23

]

R. Baheti and H. Gill, “Cyber-physical systems,” The Impact of Control Technology, IEEE,

no. 1st Edition, pp. 161-166, 2011.

[24

]

H. Song, D. Rawat, S. Jeschke and C. Brecher, Cyber-Physical Systems: Foundations,

Principles and Applications, Elsevier Academic Pres, 2016.

[25

]

Elrharbi, Simon, and Stefan Barbu, “Characteristics of RFID Radio Signals,” in RFID and

the Internet of Things, Wiley, 2013, pp. 7-55.

[26

]

C. d. M. Cordeiro and D. P. Agrawal, Ad Hoc and Sensor Networks: Theory and

Applications, World Scientific , 2006.

[27

]

Dargie, Waltenegus, and Christian Poellabauer., Fundamentals of wireless senor

networks theory and practices, John Wiley & Sons, 2010.

P a g e | 329

[28

]

A. A. Jahromi and D. Kndur, “Fundamentals of Cyber-Physical Systems,” Cyber-Physical

Systems in the Built Environment , pp. 1-13, 2020.

[29

]

W. Reisig, A Primer in Petri Net Design, Springer-Verlag Berlin Heidelberg, 1992.

[30

]

R. R. Igorevich, P. Park, J. Choi and D. Min, “iVision based Context-Aware Smart Home

system,” in The 1st IEEE Global Conference on Consumer Electronics, Tokyo, 2012.

[31

]

K. S. Manoj, Indusrtrial Automation with SCADA: Concepts, Communications and

Security, Chennai: Notion Press, 2019.

[32

]

L. Monostori, B. Kádár, T. Bauernhansl, S. Kondoh , S. Kumara, G. Reinhart, O. Sauer, G.

Schuh, W. Sihn and K. Ueda, “Cyber-physical systems in manufacturing,” CIRP Annals -

Manufacturing Technology, vol. 65, no. 2, p. 621–641, 2016.

[33

]

M. El-Hajj, M. Chamoun, A. Fadlallah and A. Serhrouchni, “Analysis of Cryptographic

Algorithms on IoT Hardware Platforms,” in 2nd CyberSecurity in Netwroking Conference

(CSNET), Paris, 2018.

[34

]

J. Califano, “How to Choose a Microcontroller for IoT,” 29 6 2018. [Online]. Available:

https://dzone.com/articles/how-to-choose-a-microcontroller-for-iot. [Accessed 24 8

2020].

[35

]

D. Zeng, S. Guo and Z. Cheng, “The Web of Things: A Survey,” Journal of Communications,

vol. 6, no. 6, pp. 424-438, 2011.

[36

]

M. Naeem, W. Ejaz, L. Karim, S. H. Ahmad, A. Anpalagan, M. Jo and H. Song, “Distributed

Gateway Selection for M2M Communication in Cognitive 5G Networks,” IEEE Network,

vol. 31, no. 6, pp. 94-100, 2017.

[37

]

Z. Shelby, K. Hartke, C. Bormann and B. Frank, “The Internet Engineering Task Force

(IETF)- BCP78 and BCP79,” 9 6 2013. [Online]. Available: https://tools.ietf.org/pdf/draft-

ietf-core-coap-13.pdf. [Accessed 24 8 2020].

P a g e | 330

[38

]

H. Chabanne, RFID and the Internet of Things, Wiley, 2011.

[39

]

Yida, “Latest Open Tech From Seeed Studio for Emerging IoT, AI and Autonomous

Applications on the Edge,” 10 2019. [Online]. Available:

https://www.seeedstudio.com/blog/2019/09/25/uart-vs-i2c-vs-spi-communication-

protocols-and-uses/. [Accessed 25 8 2020].

[40

]

P. Visconti, G. Giannotta, R. Brama, P. Primiceri, A. Malvasi and A. Centuori, “Features,

operation principle and limits of spi and I2C communication protocols for smart objects:

A novel spi-based hybrid protocol especially suitable for IoT applications,” International

Journal on Smart Sensing and Intelligent Systems, vol. 10, no. 2, pp. 262-295, 2017.

[41

]

P. Spasov, Microcontroller Technology: The 68HC11 and 68HC12, Pearson, 2004.

[42

]

S. Vuppala and H. K. Kumar, “Service Applications - Exploiting the Internet of Things,” in

Annual SRII Global Conference, SRII. , San Jose, 2014.

[43

]

Aftab, H., Gilani, K., Lee, J., Nkenyereye, L., Jeong, S., & Song, “Analysis of identifiers on

IoT platforms,” Digital Communications and Networks, pp. 1-3, 2019.

[44

]

B. S. Mohammad, Embedded Memory Design for Muti-Core and Systems on Chip, New

York: Springer Science and Business Media, 2014.

[45

]

M. Barr, “Memory Types,” Embedded Systems Programming, vol. 14, no. 5, pp. 103-104,

2001.

[46

]

J. Singh and B. Raj, “SRAM Cells for Embedded Systems,” in Embedded Systems - Theory

and Design Methodology, London, IntechOpen Limited, 2012, pp. 387-406.

[47

]

D. A. Hodges, Analysis and Design of Digital Integrated Circuits, McGraw-Hill Publishing

Company Limited, 2003.

P a g e | 331

[48

]

S. Fuji, K. Natori, T. Furuyama, S. Saito, H. Toda and O. Ozawa, “A Low-Power Sub 100ns

256K Bit Dynamic RAM,” IEEE Journal of Solid-State Circuits, vol. 8, no. 5, pp. 441-446,

1983.

[49

]

B. Keeth and R. J. Baker, DRAM Circuit Design: A Tutorial, Wiley-IEEE Press, 2000.

[50

]

R. BEZ, B. CAMERLENGHI, A. MODELLI and A. VISCONTI, “Introduction to Flash Memory,”

PROCEEDINGS OF THE IEEE, vol. 9, no. 4, pp. 489-502, 2003.

[51

]

A. Sehgal, V. Perelman, S. Kuryla and J. Schönwälder, “Management of Resource

Constrained Devices in the Internet of Things,” IEEE Communications Magazine, vol. 50,

no. 12, pp. 144-149, 2012.

[52

]

C. Bormann, M. Ersue and A. Keranen, “Internet Engineering Task Force,” May 2014.

[Online]. Available: https://tools.ietf.org/html/rfc7228#section-2.1. [Accessed 15 8

2020].

[53

]

A. Schmidt and K. Van Laerhoven, “How to Build Smart Appliances?,” IEEE Personal

Communications, vol. 8, no. 4, pp. 66-71, 2001.

[54

]

M. Ersue, D. Romascanu, J. Schönwälder and A. Sehgal, “Management of Networks with

Constrained Devices: Use Cases,” Internet Engineering Task Force (IETF) RFC 7548, 2015.

[55

]

P. Sethi and S. R. Sarangi, “Internet of Things: Architectures, Protocols, and

Applications,” Journal of Electrical and Computer Engineering, vol. 2017, no. Article ID

9324035, 2017.

[56

]

K. Boeckl, M. Fagan, W. Fisher, N. Lefkovitz, K. N. Megas, E. Nadeau, D. G. O’Rourke, B.

Piccarreta and K. Scarfone, “Considerations for Managing Internet of Things (IoT)

Cybersecurity and Privacy Risks,” National Institute of Standards and Technology,

Gaithersburg, 2019.

P a g e | 332

[57

]

“Arduino UNO,” [Online]. Available:

https://create.arduino.cc/projecthub/patchr_io/explorer-uno-pcb-template-design-

your-own-de89da.

[58

]

“Arduino IDE,” [Online]. Available: https://www.arduino.cc/en/main/software .

[59

]

“Contiki,” [Online]. Available: https://sourceforge.net/projects/contiki/ .

[60

]

“Android Things,” [Online]. Available: https://github.com/androidthings .

[61

]

“RIOT,” [Online]. Available: https://github.com/RIOT-OS/RIOT .

[62

]

“Apache Mynewt,” [Online]. Available: https://github.com/apache/mynewt-core .

[63

]

“Huawei LiteOS,” [Online]. Available: https://github.com/LiteOS .

[64

]

“Zephyr,” [Online]. Available: https://github.com/zephyrproject-rtos/zephyr .

[65

]

“Ubuntu Snappy,” [Online]. Available: https://ubuntu.com/download/iot/raspberry-pi-

2-3-core.

[66

]

“TinyOS,” [Online]. Available: https://github.com/saikatbsk/tinyOS .

[67

]

“FuchsiaOS,” [Online]. Available: https://github.com/FuchsiaOS .

[68

]

“Samsung TizenRT,” [Online]. Available: https://github.com/Samsung/TizenRT.

P a g e | 333

[69

]

“Raspberry Pi OS,” [Online]. Available:

https://www.raspberrypi.org/downloads/raspberry-pi-os/ .

[70

]

“Amazon FreeRTOS,” [Online]. Available: https://github.com/aws/amazon-freertos.

[71

]

“Embedded Linux,” [Online]. Available: https://github.com/fkromer/awesome-

embedded-linux .

[72

]

“mbedOS,” [Online]. Available: https://github.com/ARMmbed/mbed-

os/releases/tag/mbed-os-5.13.4 .

[73

]

e. a. Montenegro G., “ Transmission of IPv6 Packets over IEEE 802.15.4 Networks,”

Internet Engineering Task Force, 2007.

[74

]

I. S. Association, “IEEE 802.15.4-2020 - IEEE Standard for Low-Rate Wireless Networks,”

[Online]. Available: https://standards.ieee.org/standard/802_15_4-2020.html.

[75

]

MIPI, “MIPI M-PHY,” [Online]. Available: https://mipi.org/specifications/m-phy.

[76

]

MIPI, “UniPro v.1.40.00 Specification,” [Online]. Available:

https://members.mipi.org/mipi-adopters/file-

fix/Specifications/Board%20Approved/mipi_UniPro_specification_v1-40-00.pdf.

[77

]

“Mobile PCIe Specification,” [Online]. Available:

https://pcisig.com/sites/default/files/files/PCI-

SIG%20and%20MIPI%20Alliance%20Announce%20Mobile%20PCIe%20(M-

PCIe)%20Specification.pdf.

[78

]

M. Organization, “Modbus Homepage,” [Online]. Available: http://www.modbus.org/.

[79

]

Oracle, “Internet of Things Intelligent Applications,” [Online]. Available:

https://www.oracle.com/it/internet-of-things/.

P a g e | 334

[80

]

Google, “IoT Overview,” [Online]. Available: https://cloud.google.com/solutions/iot-

overview .

[81

]

Google, “Cloud IoT Core Service,” [Online]. Available: https://cloud.google.com/iot-

core.

[82

]

“Energy@Home Project Hompage,” [Online]. Available: http://www.energy-home.it/.

[83

]

M. D. F. L. Bononi, “Corso di Internet of Things,” [Online]. Available:

https://site.unibo.it/iot/en/teaching-1/the-iot-course .

[84

]

“DB-Engines.com Website,” [Online]. Available: db-engines.com.

[85

]

“InfluxDB Homepage,” [Online]. Available: https://www.influxdata.com.

[86

]

D. Francois, “Methodology and standards for data analysis with machine learning tools,”

[Online]. Available: https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2008-

4.pdf.

[87

]

Grafana Labs, “Grafana website,” [Online]. Available: https://grafana.com/.

[88

]

Elasticsearch B.V., “Kibana website,” [Online]. Available: https://www.elastic.co/kibana.

[89

]

Microsoft, “Power BI Desktop,” [Online]. Available: https://powerbi.microsoft.com/it-

it/desktop/.

[90

]

W. S. a. L. Brow, Computer Security: Principles and Practice, Pearson, 2018.

P a g e | 335

[91

]

ENISA, “Baseline Security Recommendations for IoT in the context of CII_FINAL,” ENISA,

2017. [Online]. Available: https://www.enisa.europa.eu/publications/baseline-security-

recommendations-for-iot. [Accessed December 2020].

[92

]

ENISA, “ENISA Report - Guidelines for Securing the Internet of Things,” 2020. [Online].

Available: https://www.enisa.europa.eu/news/enisa-news/iot-security-enisa-

publishes-guidelines-on-securing-the-iot-supply-chain . [Accessed December 2020].

[93

]

ENISA, “Good practices for security of IoT,” 2019. [Online]. Available:

https://www.enisa.europa.eu/publications/good-practices-for-security-of-iot-1 .

[Accessed December 2020].

[94

]

A. McEwen, Designing the Internet of things, Chichester: England, 2014, p. 338.

[95

]

R. Mansell, Imagining the Internet: Communication, Innovation, and Governance,

Oxford: Oxford University Press, 2012.

[96

]

S. Jasanoff, “Virtual, Visible, and actionable: Data assemblages and the sightlines of

justice,” Big Data & Society, vol. 4, no. 2, 2017.

[97

]

F. P. A. a. N. S. Ustek-Spilda, “ Engaging with Ethics in Internet of Things,” Big Data &

Society, vol. 6, no. 2, 2019.

[98

]

“The Stanford Encyclopedia of Philosophy,” [Online]. Available: plato.stanford.edu.

[99

]

J. M. M. B. e. a. Nijhawan LP, “Informed consent: Issues and challenges.,” J Adv Pharm

Technol Res., vol. 4, no. 3, pp. 134-140., 2013.

[10

0]

R. M. Kidder, How Good People Make Tough Choices, Harper Collins, 2003.

[10

1]

K. Macnish, The Ethics of Surveillance: an introduction., Routledge: London. , 2018.

P a g e | 336

[10

2]

A. A. J. Antoniou, “Case Study: The Internet of Things and Ethics,,” The Orbit Journal

Special Issue - Case Studies of Ethics and Human Rights in Smart Inforation Systems, vol.

2, no. 2, pp. 1-9, 2019.

[10

3]

R. e. a. Chory, “Organizational Surveillance of Computer-Mediated Workplace

Communication: Employee Privacy Concerns and Responses.,” Employee

Responsibilities and Rights, , vol. 28, no. 1, pp. 23-43, 2016.

[10

4]

U. Hugl, “Workplace surveillance: examining current instruments, limitations and legal

background issues.,” Tourism & Management Studies, vol. 9, no. 1, pp. 58-63, 2013.

[10

5]

G. Edwards, Employee Monitoring. What are the Legal Issues?.Credit Management,

p.49., 2015.

[10

6]

E. Hossain, Internet of things A to Z, New Jersy: Wiley, 2018.

[10

7]

C. Wang, “Object Identification Techniques and the Application in IoT,” Advances in

Media Technology , vol. 9, 2013.

[10

8]

Ranasinghe, D., Cole, P, “Far-field tag antenna design methodology,” in RFID handbook:

applications, technology, security, and privacy, 2008, p. 65–91.

[10

9]

Z. Feng, “Biometric Identification Technology and Development Trend of Physiological

Characteristics,” Journal of Physics: Conference Series, vol. 1060, pp. 1-6, 2018.

[11

0]

S. H. Lin, “An introduction to face recognition technology,” Informing Sci. Int. J. an

Emerg. Transdiscipl, vol. 3, pp. 1-7, 2000.

[11

1]

Farooq-i-Azam, Muhammad, and Muhammad Naeem Ayyaz, “Location and Position

Estimation in Wireless Sensor Networks,” in Wireless Sensor Networks: Current Status

and Future Trends, CRC Press, 2016, pp. 179-214.

[11

2]

R. Mautz, “Combination of Indoor and Outdoor Positioning,” in 1st International

Conference on Machine Control & Guidance, 2008.

P a g e | 337

[11

3]

Du, H., Zhang, C., Ye, Q., Xu, W., Kibenge, P. L., & Yao, K., “ A hybrid outdoor localization

scheme with high-position accuracy and low-power consumption,” EURASIP Journal on

Wireless Communications and Networking, vol. 1, no. 4, 2018.

[11

4]

Singh, Santar Pal, and S. C. Sharma, “Range free localization techniques in wireless

sensor networks: A review,” Procedia Computer Science , vol. 57, no. 7, pp. 7-16 , 2015.

[11

5]

Nabil Alrajeh, Maryam Bashir, “Localization Techniques in Wireless Sensor Networks,”

International Journal of Distributed Sensor Networks , vol. 9, no. 6, 2013.

[11

6]

C. A. Howells, “Piezoelectric energy harvesting,” Energy Conversion and Management ,

vol. 50, no. 7, pp. 1847-1850, 2009.

[11

7]

“piezoelectric material,” elporocus, [Online]. Available:

https://www.elprocus.com/what-is-a-piezoelectric-material-working.

[11

8]

X. Lui, “An Electromagnetic Energy Harvester for Powering,” Master Thesis, 2012.

[11

9]

Tang, X., Wang, X., Cattley, R., Gu, F., & Ball, A. D., “Energy Harvesting Technologies for

Achieving Self-Powered Wireless Sensor Networks in Machine Condition Monitoring: A

Review,” Sensors, vol. 18, no. 12, 2018.

[12

0]

A. B. Vijay Madisetti, Internet of Things A Hands-On- Approach, VPT, 2014.

[12

1]

Bizon, N., Tabatabaei, N. M., Blaabjerg, F., & Kurt, E., Energy harvesting and energy

efficiency, Berlin: Springer, 2017.

[12

2]

Anusuya, M. A., and Shriniwas K. Katti. , “Speech Recognition by Machine: A Review,”

arXiv preprint arXiv:1001.2267 , 2010.

[12

3]

Khan, Shafiullah, Al-Sakib Khan Pathan, and Nabil Ali Alrajeh, Wireless Sensor Networks:

Current Status and Future Trends, CRC press, 2016.

P a g e | 338

[12

4]

“Electronics Tutorials,” [Online]. Available: https://www.electronics-

tutorials.ws/io/io_1.html.

[12

5]

P. Stokes, “4 Stages of IoT architecture explained in simple words,” Medium.com,

[Online]. Available: https://medium.com/datadriveninvestor/4-stages-of-iot-

architecture-explained-in-simple-words-

b2ea8b4f777f#:~:text=In%20essence%2C%20IoT%20architecture%20is,a%20sophistica

ted%20and%20unified%20network..

 [

	Abstract
	Table of Contents
	1 Introduction to IoT
	1.1 Introduction
	1.1.1 What is the Internet of Things?
	1.1.2 IoT History
	1.1.3 IoT Facts
	1.1.4 IoT Penetration
	1.1.5 What happens today?
	1.1.6 Applications

	1.2 Enabling technologies for IoT
	1.2.1 Addressability
	1.2.2 Application Layer
	1.2.3 Communication Technologies
	1.2.3.1 Short-range wireless
	1.2.3.2 Medium-range wireless
	1.2.3.3 Long-range wireless
	1.2.3.4 Wired Technologies

	1.2.4 Standards and Standards Organizations

	1.3 IoT vertical applications
	1.3.1 Consumer Applications
	1.3.1.1 Smart Home
	1.3.1.2 Elder care

	1.3.2 Organizational Applications
	1.3.2.1 Medical and healthcare
	1.3.2.2 Transportation
	1.3.2.3 V2X communications
	1.3.2.4 Building and home automation

	1.3.3 Industrial Applications
	1.3.3.1 Manufacturing
	1.3.3.2 Agriculture

	1.3.4 Infrastructure Applications
	1.3.4.1 Metropolitan scale deployments / Smart City
	1.3.4.2 Energy management / Smart Grid
	1.3.4.3 Environmental monitoring
	1.3.4.4 Living Lab

	1.3.5 Military Applications
	1.3.5.1 Internet of Battlefield Things
	1.3.5.2 Ocean of Things

	1.4 Identification of key research directions and connections
	1.4.1 Trends and Characteristics
	1.4.1.1 Intelligence
	1.4.1.2 Architecture
	1.4.1.3 Size Considerations
	1.4.1.4 Space Considerations

	1.4.2 IoT Challenges
	1.4.2.1 Security
	1.4.2.2 Regulation
	1.4.2.3 Compatibility
	1.4.2.4 Bandwidth
	1.4.2.5 Energy consumption
	1.4.2.6 Customers’ expectations

	2 Revision of Basic Programming and IoT IDE
	2.1 Introduction to Programming for IoT
	2.2 Programming fundamentals
	2.2.1 Prerequisites
	2.2.2 Programming concepts covered

	2.3 Procedural programming
	2.4 Variables, Expressions and Simple Statements
	2.4.1 Data Types
	2.4.2 Comments
	2.4.3 Expressions
	2.4.4 Code Blocks
	2.4.5 Statements
	2.4.6 Conditionals
	2.4.7 Loops
	2.4.8 Arrays
	2.4.9 Functions and Function Calls

	2.5 Integrated Development Environment
	2.6 Practice exercises
	2.7 Concluding remarks and further resources
	2.7.1 Further resources

	3 Software Development for IoT Embedded Systems
	3.1 Introduction
	3.2 The development environment
	3.2.1 Tour of the IDE
	3.2.2 Tour of the Arduino UNO
	3.2.3 Hello (Blinking) World!
	3.2.4 Monitoring code execution and debugging

	3.3 Examples
	3.3.1 Simple traffic lights system
	3.3.1.1 Components, Connections and Code

	3.3.2 Adaptive traffic lights system
	3.3.2.1 Components, Connections and Code

	3.4 Additional Resources
	3.4.1 Arduino simulator
	3.4.2 Online tutorials and examples

	4 IoT architecture and components (1 of 2)
	4.1 Introduction
	4.2 Characteristics and Requirements of the IoT
	4.2.1 Useful Definitions
	4.2.2 ITU-T Technical Overview of the IoT
	4.2.3 Types of Devices
	4.2.4 Fundamental Characteristics of the IoT
	4.2.5 IoT Requirements

	4.3 IoT Architectures
	4.3.1 3-Layer Architecture
	4.3.2 5-layer Architecture
	4.3.3 Cloud and Fog-Based Architectures
	4.3.4 Social IoT
	4.3.5 The ITU-T IoT Reference Model
	4.3.5.1 Device Layer
	4.3.5.2 Network Layer
	4.3.5.3 Service Support and Application Support Layer
	4.3.5.4 Application Layer
	4.3.5.5 Management Layer
	4.3.5.6 Security Layer

	4.4 IoT Devices and Components
	4.4.1 Sensors/Actuators and Embedded Technology
	4.4.1.1 Sensors
	4.4.1.2 Actuators
	4.4.1.3 Microcontrollers and Embedded Systems

	4.4.2 Connectivity
	4.4.2.1 Smart Gateway
	4.4.2.2 Networks, Mobile Technologies and Protocols

	4.4.3 Data Management and IoT Analytics
	4.4.4 IoT Cloud
	4.4.5 User Interface

	5 IoT architecture and components (2 of 2)
	5.1 Cyber-Physical System
	5.1.1 Introduction
	5.1.2 The Rise of CPS
	5.1.3 Smart Home Systems as a CPS Case study
	5.1.3.1 Real system and controller both mapped and synchronized in virtual environment

	5.2 Basic concepts of IoT
	5.2.1 Storage and Central Processing Units
	5.2.2 Data Movement
	5.2.3 Input and Output SPI/I2C.
	5.2.4 The instruction cycle/ the fetch-decode-execute cycle.
	5.2.5 Accelerators.
	5.2.6 Peripherals.

	5.3 Embedded Memory
	5.3.1 Embedded Systems Memory Types
	5.3.1.1 Static RAM (SRAM)
	5.3.1.2 Dynamic RAM (DRAM)
	5.3.1.3 Flash Memory

	5.4 Causes and Implications of Memory
	5.4.1 Compute-Constrained Devices
	5.4.2 Constrained Node, Constrain Network and Constrained-Node Network
	5.4.3 The need for Management of constrains devices and constrained devises restrictions
	5.4.4 Applications for Constrained Devices

	6 IoT Microcontrollers, Sensors for Data Acquisition and Actuators
	6.1 Implementing the Internet of Things
	6.2 Microcontrollers
	6.2.1 Examples of microcontrollers
	6.2.1.1 Arduino Uno
	6.2.1.2 Arduino Mega
	6.2.1.3 Raspberry PI
	6.2.1.4 ARM Microcontrollers

	6.3 Real-time Systems
	6.4 Embedded Software
	6.5 IoT Operating Systems
	6.5.1 Arduino IDE
	6.5.2 ARM MCU Programming
	6.5.3 Contiki
	6.5.4 Android Things
	6.5.5 Riot
	6.5.6 Apache Mynewt
	6.5.7 Huawei LightOS
	6.5.8 Zephyr
	6.5.9 Snappy
	6.5.10 TinyOS
	6.5.11 Fuchsia
	6.5.12 Windows IoT
	6.5.13 TizenRT
	6.5.14 Raspbian or Raspberry Pi OS
	6.5.15 FreeRTOS
	6.5.16 Embedded Linux
	6.5.17 mbed OS

	6.6 Sensing components and devices
	6.6.1 Sensors
	6.6.1.1 Position Sensors
	6.6.1.2 Temperature Sensors
	6.6.1.3 Light Sensors
	6.6.1.4 Sound Sensors
	6.6.1.5 Distance Sensors

	6.6.2 Actuators
	6.6.2.1 Electrical Relays
	6.6.2.2 DC Motors
	6.6.2.3 DC Servo Motor
	6.6.2.4 Loudspeaker

	7 IoT Connectivity Technologies
	7.1 Introduction
	7.1.1 Technologies for connectivity

	7.2 Short range communications
	7.2.1 Wireless Local Area Networks (Wi-Fi)
	7.2.1.1 802.11 standard
	7.2.1.2 Architecture
	7.2.1.3 Layers and functions
	7.2.1.4 Wi-Fi HaLow

	7.2.2 Wireless Personal Area Networks (Bluetooth)
	7.2.2.1 Protocol stack
	7.2.2.2 Bluetooth Low Energy
	7.2.2.2.1 Bluetooth Low Energy Architecture

	7.2.2.3 Bluetooth Mesh

	7.2.3 Personal Area Networks (Zigbee)
	7.2.3.1 Protocol stack: PHY, NET, Application layers
	7.2.3.2 ZigBee profiles

	7.3 Wide Area Networks: Cellular connectivity
	7.3.1 Sigfox
	7.3.2 LoRa
	7.3.3 NB-IoT

	7.4 Wireless Sensor Networks
	7.4.1 Introduction
	7.4.1.1 Multi-hop networks
	7.4.1.2 Requirements for WSN

	7.4.2 6LoWPAN
	7.4.2.1 6LoWPAN protocol stack

	8 IoT Connectivity Protocols
	8.1 IoT Connectivity Protocols
	8.2 IoT Connectivity Paradigms
	8.3 Application Layer Protocols for the IoT
	8.3.1 HTTP
	8.3.2 MQTT
	8.3.3 CoAP
	8.3.4 WebSocket
	8.3.5 AMQP
	8.3.6 Test cases for the IoT Protocols

	8.4 Integrating IoT within current networks
	8.4.1 IPv4/IPv6, Ethernet/GigE.
	8.4.2 Cellular/WAN connectivity
	8.4.3 Dedicated standards
	8.4.3.1 IEEE 802.15.4
	8.4.3.2 M-PHY
	8.4.3.3 UniPro
	8.4.3.4 SPMI
	8.4.3.5 SuperSpeed USB Inter-Chip (SSIC)
	8.4.3.6 Mobile PCIe (M-PCIe)
	8.4.3.7 SPI
	8.4.3.8 MODBUS
	8.4.3.9 OBD

	8.5 Test cases for Connecting the Internet of Things

	9 Data Storage and Cloud Systems
	9.1 Introduction
	9.2 Cloud Computing Basics
	9.3 Processing for the Internet of Things Services
	9.3.1 On-device Processing
	9.3.2 Gateway Processing
	9.3.3 Cloud Processing
	9.3.3.1 Dataflow
	9.3.3.2 IoT Core
	9.3.3.3 Publish/Subscribe Services
	9.3.3.4 Cloud Monitoring and Cloud Logging
	9.3.3.5 Pipeline processing tasks
	9.3.3.6 Analytics

	9.4 Storage
	9.4.1 SQL Databases
	9.4.2 NoSQL Databases
	9.4.3 Time Series Databases

	10 Data Analytics and Applications
	10.1 Data Analytics
	10.2 Interpretation of IoT Data
	10.3 Visualization of Data
	10.3.1 Grafana
	10.3.2 Kibana
	10.3.3 Power BI

	10.4 A case study of a simple sensor, broker, app application deployment

	11 IoT Security and security standards
	11.1 The Internet of Things (IoT) – An Overview
	11.1.1 Evolution
	11.1.2 IoT Components
	11.1.2.1 Edge
	11.1.2.2 Fog
	11.1.2.3 Core

	11.1.3 IoT Security
	11.1.3.1 Patching Vulnerability
	11.1.3.2 IoT Security and Privacy Requirements
	11.1.3.3 An IoT security framework

	11.2 Baseline Security Recommendations for IoT
	11.2.1 Security considerations
	11.2.2 Challenge of defining horizontal baseline security measures
	11.2.3 Security measures and good practices
	11.2.3.1 Policies
	11.2.3.2 Organisational, People and Process measures
	11.2.3.3 Technical Measures

	11.2.4 Gaps analysis
	11.2.4.1 Gap 1: Fragmentation in existing security approaches and regulations
	11.2.4.2 Gap 2: Lack of awareness and knowledge
	11.2.4.3 Gap 3: Insecure design and/or development
	11.2.4.4 Gap 4: Lack of interoperability across different IoT devices, platforms and frameworks
	11.2.4.5 Gap 5: Lack of economic incentives
	11.2.4.6 Gap 6: Lack of proper product lifecycle management

	11.3 Guidelines for Securing the Internet of Things: Secure supply chain for IoT
	11.3.1 Supply chain reference model for IoT
	11.3.2 Good practices for security of IoT supply chain

	11.4 Secure Software Development Lifecycle
	11.4.1 IoT Secure Software Development Lifecycle (SDLC)
	11.4.2 SDLC phases
	11.4.3 Security in SDLC

	12 Ethics in IoT Networks and Applications
	12.1 General Principles
	12.1.1 General Perceptions of Ethics related to technology and IoT
	12.1.2 Why Ethics?
	12.1.2.1 The right to privacy
	12.1.2.2 The principle of informed consent
	12.1.2.3 Data security and safety
	12.1.2.4 Transparency and trust
	12.1.2.5 Information and power asymmetries
	12.1.2.6 Why Ethics?

	12.1.3 A methodical Approach to Resolution

	12.2 Focusing on IoT Development and Usage
	12.2.1 Operational Ethics Requirements for technology developers and users
	12.2.2 Law & Ethics and their application to technology development and use

	12.3 The ‘IoT and Ethics’ case study

	13 Key-Enabling Technologies and Applications in IoT
	13.1 Introduction
	13.2 Identification
	13.2.1 Radio Frequency Identification (RFID):
	13.2.1.1 Energy transmission modes in RFID
	The most common transmitted powers are in the hundreds of milliwatts range and are determined by the device context, power block limitations, antenna configurations, and electromagnetic environment. [38]. Th RFID tag power ranges from µW to mW, depend...
	13.2.1.2 Data communications modes in RFID
	13.2.1.3 Protocols of RFID communications
	13.2.1.4 RFID Data Coding
	13.2.1.5 Anti-Collision Protocol
	13.2.1.6 Deterministic Anti-Collision Protocol
	13.2.1.7 Probabilistic Anti-Collision Protocol
	13.2.1.8 Applications of RFID

	13.2.2 Barcode Identification Technique
	13.2.2.1 Barcode work principle
	13.2.2.2 Barcodes types
	13.2.2.3 Barcode Applications and uses

	13.2.3 Biometric Identification
	13.2.4 Comparison of identification techniques

	13.3 Localization
	13.3.1 Overview of Localization process
	13.3.2 Localization techniques classification
	13.3.3 Positioning systems
	13.3.3.1 Outdoor Positioning Systems
	13.3.3.2 Indoor Positioning Systems
	13.3.3.3 Factors influence the selection of localization techniques

	13.3.4 Ranging Techniques
	13.3.4.1 Time of Arrival
	13.3.4.2 Time Difference of Arrival (TDoA)
	13.3.4.3 Propagation Model
	13.3.4.4 Angel of Arrival (AoA)

	13.3.5 Range-base Localization
	13.3.5.1 Triangulation
	13.3.5.2 Trilateration
	13.3.5.3 Iterative and Collaborative Multilateration

	13.3.6 Range-Free Localization
	13.3.6.1 Approximate Point in Triangle (APIT)
	13.3.6.2 Ad Hoc Positioning System (APS)
	13.3.6.3 Fingerprint –based indoor localization techniques

	13.3.7 Comparison of localization techniques

	13.4 IoT Power Management
	13.4.1 Energy Harvesting
	13.4.1.1 Technologies of Energy Harvesting

	13.4.2 Battery technologies for IoT

	Bibliography

